Suppr超能文献

非同源 DNA 末端连接途径修复双链 DNA 断裂的机制。

The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.

机构信息

Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA.

出版信息

Annu Rev Biochem. 2010;79:181-211. doi: 10.1146/annurev.biochem.052308.093131.

Abstract

Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). The various causes of double-strand breaks (DSBs) result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, DNA polymerases, and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during variable (diversity) joining [V(D)J] recombination and class switch recombination (CSR). Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation (IR), but also severely immunodeficient.

摘要

双链 DNA 断裂是真核细胞中的常见事件,有两种主要的修复途径:同源重组 (HR) 和非同源 DNA 末端连接 (NHEJ)。各种双链断裂 (DSBs) 的原因导致了 DNA 末端的化学多样性,必须进行修复。在 NHEJ 进化过程中,NHEJ 途径的酶在其可以作用的 DNA 末端底物构象范围内表现出显著的结构耐受性。在脊椎动物细胞中,NHEJ 的核酸酶、DNA 聚合酶和连接酶是其各自类别中最具机械灵活性和多功能性的酶。与更明确损伤的修复途径不同,NHEJ 修复酶可以迭代地作用,以任意顺序作用,并且可以在连接的两个 DNA 末端中的每一个独立地发挥作用。NHEJ 不仅对染色体易位等病理性 DSBs 的修复至关重要,而且对可变 (多样性) 连接 [V(D)J] 重组和类别转换重组 (CSR) 过程中产生的生理性 DSBs 的修复也至关重要。因此,缺乏正常 NHEJ 的患者不仅对电离辐射 (IR) 敏感,而且还严重免疫缺陷。

相似文献

1
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.
Annu Rev Biochem. 2010;79:181-211. doi: 10.1146/annurev.biochem.052308.093131.
2
The mechanism of human nonhomologous DNA end joining.
J Biol Chem. 2008 Jan 4;283(1):1-5. doi: 10.1074/jbc.R700039200. Epub 2007 Nov 12.
3
Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
Mutat Res Genet Toxicol Environ Mutagen. 2021 Jul;867:503372. doi: 10.1016/j.mrgentox.2021.503372. Epub 2021 Jun 12.
4
Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.
J Bacteriol. 2007 Jul;189(14):5237-46. doi: 10.1128/JB.00332-07. Epub 2007 May 11.
5
PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10619-24. doi: 10.1073/pnas.1611882113. Epub 2016 Sep 6.
7
Marked contribution of alternative end-joining to chromosome-translocation-formation by stochastically induced DNA double-strand-breaks in G2-phase human cells.
Mutat Res Genet Toxicol Environ Mutagen. 2015 Nov;793:2-8. doi: 10.1016/j.mrgentox.2015.07.002. Epub 2015 Jul 4.
8
Mechanisms of DNA double strand break repair and chromosome aberration formation.
Cytogenet Genome Res. 2004;104(1-4):14-20. doi: 10.1159/000077461.
9
Repair of chromosomal double-strand breaks by precise ligation in human cells.
DNA Repair (Amst). 2013 Jul;12(7):480-7. doi: 10.1016/j.dnarep.2013.04.024. Epub 2013 May 23.
10
Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.
DNA Repair (Amst). 2015 Jul;31:29-40. doi: 10.1016/j.dnarep.2015.04.004. Epub 2015 Apr 25.

引用本文的文献

2
Insights into germline predisposition to pediatric lymphoid malignancies.
Leukemia. 2025 Sep 9. doi: 10.1038/s41375-025-02750-z.
3
RNA Modifications in Health and Disease.
MedComm (2020). 2025 Sep 3;6(9):e70341. doi: 10.1002/mco2.70341. eCollection 2025 Sep.
5
Cutting-edge technologies in neural regeneration.
Cell Regen. 2025 Sep 5;14(1):38. doi: 10.1186/s13619-025-00260-y.
7
Chromosomal Instability and Chromoanagenesis as Forces for Genomic Evolution.
Methods Mol Biol. 2025;2968:591-613. doi: 10.1007/978-1-0716-4750-9_36.
10
Structural Variants: Mechanisms, Mapping, and Interpretation in Human Genetics.
Genes (Basel). 2025 Jul 29;16(8):905. doi: 10.3390/genes16080905.

本文引用的文献

2
A microhomology-mediated break-induced replication model for the origin of human copy number variation.
PLoS Genet. 2009 Jan;5(1):e1000327. doi: 10.1371/journal.pgen.1000327. Epub 2009 Jan 30.
4
5
DNA-PK: the means to justify the ends?
Adv Immunol. 2008;99:33-58. doi: 10.1016/S0065-2776(08)00602-0.
6
Conformational variants of duplex DNA correlated with cytosine-rich chromosomal fragile sites.
J Biol Chem. 2009 Mar 13;284(11):7157-64. doi: 10.1074/jbc.M806866200. Epub 2008 Dec 23.
7
9
Collateral damage from antigen receptor gene diversification.
Cell. 2008 Dec 12;135(6):1009-12. doi: 10.1016/j.cell.2008.11.024.
10
Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching.
J Exp Med. 2008 Dec 22;205(13):3079-90. doi: 10.1084/jem.20082271. Epub 2008 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验