Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Mutat Res Genet Toxicol Environ Mutagen. 2021 Jul;867:503372. doi: 10.1016/j.mrgentox.2021.503372. Epub 2021 Jun 12.
We recently reported that when low doses of ionizing radiation induce low numbers of DNA double-strand breaks (DSBs) in G-phase cells, about 50 % of them are repaired by homologous recombination (HR) and the remaining by classical non-homologous end-joining (c-NHEJ). However, with increasing DSB-load, the contribution of HR drops to undetectable (at ∼10 Gy) as c-NHEJ dominates. It remains unknown whether the approximately equal shunting of DSBs between HR and c-NHEJ at low radiation doses and the predominant shunting to c-NHEJ at high doses, applies to every DSB, or whether the individual characteristics of each DSB generate processing preferences. When G-phase cells are irradiated, only about 10 % of the induced DSBs break the chromatids. This breakage allows analysis of the processing of this specific subset of DSBs using cytogenetic methods. Notably, at low radiation doses, these DSBs are almost exclusively processed by HR, suggesting that chromatin characteristics awaiting characterization underpin chromatid breakage and determine the preferential engagement of HR. Strikingly, we also discovered that with increasing radiation dose, a pathway switch to c-NHEJ occurs in the processing of this subset of DSBs. Here, we confirm and substantially extend our initial observations using additional methodologies. Wild-type cells, as well as HR and c-NHEJ mutants, are exposed to a broad spectrum of radiation doses and their response analyzed specifically in G phase. Our results further consolidate the observation that at doses <2 Gy, HR is the main option in the processing of the subset of DSBs generating chromatid breaks and that a pathway switch at doses between 4-6 Gy allows the progressive engagement of c-NHEJ. PARP1 inhibition, irrespective of radiation dose, leaves chromatid break repair unaffected suggesting that the contribution of alternative end-joining is undetectable under these experimental conditions.
我们最近报道称,当低剂量电离辐射在 G 期细胞中诱导少量 DNA 双链断裂(DSB)时,约 50%的 DSB 通过同源重组(HR)修复,其余通过经典非同源末端连接(c-NHEJ)修复。然而,随着 DSB 负荷的增加,HR 的贡献降至无法检测的水平(约 10Gy),因为 c-NHEJ 占主导地位。目前尚不清楚低辐射剂量下 DSB 在 HR 和 c-NHEJ 之间的大致分流以及高剂量下主要分流到 c-NHEJ 是否适用于每个 DSB,或者每个 DSB 的个体特征是否会产生处理偏好。当 G 期细胞受到照射时,只有约 10%的诱导 DSB 会使染色单体断裂。这种断裂允许使用细胞遗传学方法分析这个特定 DSB 亚群的处理情况。值得注意的是,在低辐射剂量下,这些 DSB 几乎完全通过 HR 进行处理,这表明等待表征的染色质特征是导致染色单体断裂的原因,并决定了 HR 的优先参与。引人注目的是,我们还发现随着辐射剂量的增加,这种 DSB 亚群的处理会发生从 HR 到 c-NHEJ 的途径转换。在这里,我们使用其他方法学进一步证实和扩展了我们的初始观察。野生型细胞以及 HR 和 c-NHEJ 突变体都暴露于广泛的辐射剂量范围内,并在 G 期对其反应进行了专门分析。我们的结果进一步巩固了以下观察结果,即在剂量<2Gy 时,HR 是处理产生染色单体断裂的 DSB 亚群的主要选择,而在 4-6Gy 之间的剂量下,途径转换允许 c-NHEJ 的逐渐参与。无论辐射剂量如何,PARP1 抑制都不会影响染色单体断裂修复,这表明在这些实验条件下,替代末端连接的贡献无法检测到。