Suppr超能文献

通过诱导果蝇空中失足来发现其飞行自动稳定器。

Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.

机构信息

Department of Physics, Cornell University, Ithaca, NY 14853, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.

Abstract

Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.

摘要

就像莱特兄弟实施控制以实现稳定的飞机飞行一样,飞行昆虫已经进化出行为策略,以确保从飞行干扰中恢复。在系留和解剖昆虫上进行的开创性研究表明,感觉、神经和肌肉骨骼系统在飞行控制中发挥着重要作用。然而,这些研究不能产生昆虫飞行稳定性的综合模型,因为它们没有将这些系统与自由飞行空气动力学的相互作用结合起来。我们通过向自由飞行的果蝇(黑腹果蝇)施加扭矩脉冲并测量它们的行为反应,直接研究控制和稳定性。高速视频和一种新的运动跟踪方法捕捉到空中的“踉跄”,我们发现,果蝇通过准确地回到原来的方向来应对轻微的干扰。这些昆虫利用稳定的空气动力影响和主动扭矩产生来在 < 60 ms 内将其航向恢复到 2 度以内。为了解释这种恢复行为,我们形成了一个反馈控制模型,该模型包括果蝇感知身体旋转的能力、处理此信息以及驱动产生纠正空气动力扭矩的机翼运动的能力。因此,就像早期的人造飞机和现代战斗机一样,果蝇采用了一种自动稳定方案,该方案对短时间尺度的干扰做出反应。

相似文献

1
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.
2
Predicting fruit fly's sensing rate with insect flight simulations.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11246-51. doi: 10.1073/pnas.1314738111. Epub 2014 Jul 21.
3
Pitch perfect: how fruit flies control their body pitch angle.
J Exp Biol. 2015 Nov;218(Pt 21):3508-19. doi: 10.1242/jeb.122622. Epub 2015 Sep 18.
4
The aerodynamics of free-flight maneuvers in Drosophila.
Science. 2003 Apr 18;300(5618):495-8. doi: 10.1126/science.1081944.
5
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
J Exp Biol. 2007 Dec;210(Pt 24):4319-34. doi: 10.1242/jeb.010389.
6
Fruit flies modulate passive wing pitching to generate in-flight turns.
Phys Rev Lett. 2010 Apr 9;104(14):148101. doi: 10.1103/PhysRevLett.104.148101. Epub 2010 Apr 5.
7
The aerodynamics and control of free flight manoeuvres in Drosophila.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0388.
8
Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1182-91. doi: 10.1073/pnas.1323529111. Epub 2014 Mar 17.
9
Controlling roll perturbations in fruit flies.
J R Soc Interface. 2015 Apr 6;12(105). doi: 10.1098/rsif.2015.0075.
10
The aerodynamics of hovering flight in Drosophila.
J Exp Biol. 2005 Jun;208(Pt 12):2303-18. doi: 10.1242/jeb.01612.

引用本文的文献

1
Geometrically modulated contact forces enable hula hoop levitation.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2411588121. doi: 10.1073/pnas.2411588121. Epub 2024 Dec 30.
2
Flies adaptively control flight to compensate for added inertia.
Proc Biol Sci. 2023 Oct 11;290(2008):20231115. doi: 10.1098/rspb.2023.1115.
3
Hummingbirds use wing inertial effects to improve manoeuvrability.
J R Soc Interface. 2023 Oct;20(207):20230229. doi: 10.1098/rsif.2023.0229. Epub 2023 Oct 4.
5
An Aerial-Wall Robotic Insect That Can Land, Climb, and Take Off from Vertical Surfaces.
Research (Wash D C). 2023 May 10;6:0144. doi: 10.34133/research.0144. eCollection 2023.
6
Sensory fusion in the hoverfly righting reflex.
Sci Rep. 2023 Apr 15;13(1):6138. doi: 10.1038/s41598-023-33302-z.
7
Neuromuscular embodiment of feedback control elements in flight.
Sci Adv. 2022 Dec 14;8(50):eabo7461. doi: 10.1126/sciadv.abo7461.
8
Experimental identification of individual insect visual tracking delays in free flight and their effects on visual swarm patterns.
PLoS One. 2022 Nov 28;17(11):e0278167. doi: 10.1371/journal.pone.0278167. eCollection 2022.
9
Model-Based Tracking of Fruit Flies in Free Flight.
Insects. 2022 Nov 3;13(11):1018. doi: 10.3390/insects13111018.
10
Discovering sparse control strategies in neural activity.
PLoS Comput Biol. 2022 May 27;18(5):e1010072. doi: 10.1371/journal.pcbi.1010072. eCollection 2022 May.

本文引用的文献

1
The initiation and control of rapid flight maneuvers in fruit flies.
Integr Comp Biol. 2005 Apr;45(2):274-81. doi: 10.1093/icb/45.2.274.
2
Fruit flies modulate passive wing pitching to generate in-flight turns.
Phys Rev Lett. 2010 Apr 9;104(14):148101. doi: 10.1103/PhysRevLett.104.148101. Epub 2010 Apr 5.
4
Wingbeat time and the scaling of passive rotational damping in flapping flight.
Science. 2009 Apr 10;324(5924):252-5. doi: 10.1126/science.1168431.
5
A neural basis for gyroscopic force measurement in the halteres of Holorusia.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Oct;194(10):887-97. doi: 10.1007/s00359-008-0361-z. Epub 2008 Aug 27.
6
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
J Exp Biol. 2007 Dec;210(Pt 24):4319-34. doi: 10.1242/jeb.010389.
7
Antennal mechanosensors mediate flight control in moths.
Science. 2007 Feb 9;315(5813):863-6. doi: 10.1126/science.1133598.
8
Visual stimulation of saccades in magnetically tethered Drosophila.
J Exp Biol. 2006 Aug;209(Pt 16):3170-82. doi: 10.1242/jeb.02369.
9
The aerodynamics of hovering flight in Drosophila.
J Exp Biol. 2005 Jun;208(Pt 12):2303-18. doi: 10.1242/jeb.01612.
10
Dynamic flight stability of a hovering bumblebee.
J Exp Biol. 2005 Feb;208(Pt 3):447-59. doi: 10.1242/jeb.01407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验