Suppr超能文献

用昆虫飞行模拟预测果蝇的感知率。

Predicting fruit fly's sensing rate with insect flight simulations.

机构信息

School of Applied and Engineering Physics.

Department of Physics, andSibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853

出版信息

Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11246-51. doi: 10.1073/pnas.1314738111. Epub 2014 Jul 21.

Abstract

Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.

摘要

没有感觉反馈,苍蝇就无法飞行。各种反馈控制在昆虫中是如何工作的,这是一个复杂的难题。昆虫通过什么来稳定飞行?昆虫必须多频繁、多快地调整翅膀以保持稳定?为了深入了解昆虫用于控制动态不稳定性的算法,我们开发了一个模拟工具来研究自由飞行。为了稳定飞行,我们构建了一个控制算法,该算法根据身体俯仰方向的离散测量值来调节翅膀运动。我们的模拟为感知率和感知与动作之间的延迟时间提供了理论限制。将我们的发现与果蝇反应时间和感觉运动反射的实验结果结合起来,我们推测果蝇每拍一次翅膀就感知自己的运动状态,以稳定飞行。我们进一步提出了一种涉及蝇的平衡棒和第一基节运动神经元的控制方案。虽然我们以果蝇作为案例研究,但我们的模拟和离散控制算法框架适用于自然和人造飞行器的研究。

相似文献

1
Predicting fruit fly's sensing rate with insect flight simulations.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11246-51. doi: 10.1073/pnas.1314738111. Epub 2014 Jul 21.
2
Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1182-91. doi: 10.1073/pnas.1323529111. Epub 2014 Mar 17.
3
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.
4
Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster.
Philos Trans R Soc Lond B Biol Sci. 1999 May 29;354(1385):903-16. doi: 10.1098/rstb.1999.0442.
5
Pitch perfect: how fruit flies control their body pitch angle.
J Exp Biol. 2015 Nov;218(Pt 21):3508-19. doi: 10.1242/jeb.122622. Epub 2015 Sep 18.
6
Wing and body kinematics measurement and force analyses of landing in fruit flies.
Bioinspir Biomim. 2017 Dec 4;13(1):016004. doi: 10.1088/1748-3190/aa934b.
7
Haltere mechanosensory influence on tethered flight behavior in Drosophila.
J Exp Biol. 2015 Aug;218(Pt 16):2528-37. doi: 10.1242/jeb.121863. Epub 2015 Jun 25.
8
Fruit flies modulate passive wing pitching to generate in-flight turns.
Phys Rev Lett. 2010 Apr 9;104(14):148101. doi: 10.1103/PhysRevLett.104.148101. Epub 2010 Apr 5.
9
Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022712. doi: 10.1103/PhysRevE.92.022712. Epub 2015 Aug 14.
10
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
J Exp Biol. 2007 Dec;210(Pt 24):4319-34. doi: 10.1242/jeb.010389.

引用本文的文献

1
Hummingbirds use wing inertial effects to improve manoeuvrability.
J R Soc Interface. 2023 Oct;20(207):20230229. doi: 10.1098/rsif.2023.0229. Epub 2023 Oct 4.
2
Neuromuscular embodiment of feedback control elements in flight.
Sci Adv. 2022 Dec 14;8(50):eabo7461. doi: 10.1126/sciadv.abo7461.
3
The two-body problem: Proprioception and motor control across the metamorphic divide.
Curr Opin Neurobiol. 2022 Jun;74:102546. doi: 10.1016/j.conb.2022.102546. Epub 2022 May 2.
4
Bumblebees land remarkably well in red-blue greenhouse LED light conditions.
Biol Open. 2020 Jun 11;9(6):bio046730. doi: 10.1242/bio.046730.
5
Sensory processing by motoneurons: a numerical model for low-level flight control in flies.
J R Soc Interface. 2018 Aug;15(145). doi: 10.1098/rsif.2018.0408.

本文引用的文献

1
Active and passive stabilization of body pitch in insect flight.
J R Soc Interface. 2013 May 22;10(85):20130237. doi: 10.1098/rsif.2013.0237. Print 2013 Aug 6.
2
Controlled flight of a biologically inspired, insect-scale robot.
Science. 2013 May 3;340(6132):603-7. doi: 10.1126/science.1231806.
3
Floquet stability analysis of the longitudinal dynamics of two hovering model insects.
J R Soc Interface. 2012 Sep 7;9(74):2033-46. doi: 10.1098/rsif.2012.0072. Epub 2012 Apr 4.
4
The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
J Exp Biol. 2011 Dec 15;214(Pt 24):4092-106. doi: 10.1242/jeb.062760.
5
Fruit flies modulate passive wing pitching to generate in-flight turns.
Phys Rev Lett. 2010 Apr 9;104(14):148101. doi: 10.1103/PhysRevLett.104.148101. Epub 2010 Apr 5.
6
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.
7
Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover.
J Theor Biol. 2010 May 21;264(2):538-52. doi: 10.1016/j.jtbi.2010.02.018. Epub 2010 Feb 17.
8
Flight stabilization control of a hovering model insect.
J Exp Biol. 2007 Aug;210(Pt 15):2714-22. doi: 10.1242/jeb.004507.
9
Dynamic flight stability of a hovering bumblebee.
J Exp Biol. 2005 Feb;208(Pt 3):447-59. doi: 10.1242/jeb.01407.
10
Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation.
Phys Rev Lett. 2004 Oct 1;93(14):144501. doi: 10.1103/PhysRevLett.93.144501. Epub 2004 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验