Suppr超能文献

铜金属伴侣蛋白。

Copper metallochaperones.

机构信息

Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.

出版信息

Annu Rev Biochem. 2010;79:537-62. doi: 10.1146/annurev-biochem-030409-143539.

Abstract

The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.

摘要

本文回顾了铜金属伴侣蛋白如何支持铜蛋白成熟的现有知识。铜需要在线粒体中供应细胞色素氧化酶的 Cu(A) 和膜内 Cu(B) 位点,在高尔基体内供应分泌的铜蛋白,在细胞质中供应超氧化物歧化酶 1(Sod1)。铜锌超氧化物歧化酶的亚群也定位于线粒体、分泌系统、核内,在植物中还定位于叶绿体,叶绿体也需要铜来合成质体蓝素。原核铜蛋白存在于细胞膜和革兰氏阴性菌的周质中。Cu(I) 和 Cu(II) 与有机分子形成紧密的配合物,并驱动氧化还原化学,这种化学如果不受控制将是破坏性的。铜金属伴侣蛋白协助铜到达重要目的地,而不会造成伤害或被困在偶然结合位点。铜离子在与同源铜蛋白接触时会从铜金属伴侣蛋白中特异性释放,并且认为金属转移是通过配体取代进行的。

相似文献

1
Copper metallochaperones.
Annu Rev Biochem. 2010;79:537-62. doi: 10.1146/annurev-biochem-030409-143539.
2
Thiol-based copper handling by the copper chaperone Atox1.
IUBMB Life. 2017 Apr;69(4):246-254. doi: 10.1002/iub.1620. Epub 2017 Mar 15.
3
The C-Terminus of Human Copper Importer Ctr1 Acts as a Binding Site and Transfers Copper to Atox1.
Biophys J. 2016 Jan 5;110(1):95-102. doi: 10.1016/j.bpj.2015.11.016.
4
Ctr1 Intracellular Loop Is Involved in the Copper Transfer Mechanism to the Atox1 Metallochaperone.
J Phys Chem B. 2016 Dec 8;120(48):12334-12345. doi: 10.1021/acs.jpcb.6b10222. Epub 2016 Nov 23.
5
Extended functional repertoire for human copper chaperones.
Biomol Concepts. 2016 Feb;7(1):29-39. doi: 10.1515/bmc-2015-0030.
6
Comparison of extracellular Cys/Trp motif between Schizosaccharomyces pombe Ctr4 and Ctr5.
J Inorg Biochem. 2017 Apr;169:97-105. doi: 10.1016/j.jinorgbio.2017.01.009. Epub 2017 Jan 22.
7
Peptide models of Cu(I) and Zn(II) metallochaperones: the effect of pH on coordination and mechanistic implications.
Inorg Chem. 2013 Mar 18;52(6):2993-3000. doi: 10.1021/ic302404w. Epub 2013 Mar 4.
9
Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF.
J Am Chem Soc. 2011 Dec 7;133(48):19330-3. doi: 10.1021/ja208662z. Epub 2011 Nov 10.
10
Enthalpy-entropy compensation at play in human copper ion transfer.
Sci Rep. 2015 May 27;5:10518. doi: 10.1038/srep10518.

引用本文的文献

1
Copper homeostasis and cuproptosis in Alzheimer's disease (Review).
Int J Mol Med. 2025 Nov;56(5). doi: 10.3892/ijmm.2025.5613. Epub 2025 Aug 24.
2
Microbial metal physiology: ions to ecosystems.
Nat Rev Microbiol. 2025 Jul 25. doi: 10.1038/s41579-025-01213-7.
3
Discovering the hidden link: hematological disorders caused by copper deficiency.
Int J Hematol. 2025 Jul 14. doi: 10.1007/s12185-025-04036-7.
4
An AI framework for time series microstructure prediction from processing parameters.
Sci Rep. 2025 Jul 5;15(1):24074. doi: 10.1038/s41598-025-06894-x.
5
A kinetic model of copper homeostasis in Saccharomyces cerevisiae.
J Biol Chem. 2025 Jun 16;301(8):110368. doi: 10.1016/j.jbc.2025.110368.
7
The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer.
Signal Transduct Target Ther. 2025 May 9;10(1):149. doi: 10.1038/s41392-025-02192-0.
9
Immunomodulatory Effects of Copper Bis-Glycinate In Vitro.
Molecules. 2025 Mar 13;30(6):1282. doi: 10.3390/molecules30061282.

本文引用的文献

1
NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1.
J Biol Inorg Chem. 2010 Jan;15(1):87-98. doi: 10.1007/s00775-009-0568-7. Epub 2009 Jul 16.
2
Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding.
J Biol Chem. 2009 Jul 31;284(31):20804-11. doi: 10.1074/jbc.M109.016329. Epub 2009 Jun 12.
3
Disulfide formation in the ER and mitochondria: two solutions to a common process.
Science. 2009 Jun 5;324(5932):1284-7. doi: 10.1126/science.1170653.
4
Placing metal micronutrients in context: transport and distribution in plants.
Curr Opin Plant Biol. 2009 Jun;12(3):299-306. doi: 10.1016/j.pbi.2009.04.008. Epub 2009 May 27.
6
Copper homeostasis.
New Phytol. 2009 Jun;182(4):799-816. doi: 10.1111/j.1469-8137.2009.02846.x.
7
Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase.
J Mol Biol. 2009 Jun 12;389(3):470-9. doi: 10.1016/j.jmb.2009.04.034. Epub 2009 Apr 22.
9
The coiled coil-helix-coiled coil-helix proteins may be redox proteins.
FEBS Lett. 2009 Jun 5;583(11):1699-702. doi: 10.1016/j.febslet.2009.03.061. Epub 2009 Apr 2.
10
Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1.
Hum Mol Genet. 2009 Jun 15;18(12):2230-40. doi: 10.1093/hmg/ddp158. Epub 2009 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验