Suppr超能文献

大肠杆菌多药外排泵 AcrB 识别多种结构化合物的机制。

Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6559-65. doi: 10.1073/pnas.1001460107. Epub 2010 Mar 8.

Abstract

The AcrB trimeric multidrug efflux transporter of Escherichia coli pumps out a very wide spectrum of compounds. Although minocycline and doxorubicin have been cocrystallized within the large binding pocket in the periplasmic domain of the binding protomer, nothing is known about the binding of many other ligands to this protein. We used computer docking to evaluate the interaction of about 30 compounds with the binding protomer and found that many of them are predicted to bind to a narrow groove at one end of the pocket whereas some others prefer to bind to a wide cave at the other end. Competition assays using nitrocefin efflux and covalent labeling of Phe615Cys mutant AcrB with fluorescein-5-maleimide showed that presumed groove-binders competed against each other, but cave-binders did not compete against groove-binders, although the number of compounds tested was limited. These results give us at least a hypothesis to be tested by more biochemical and genetic experiments in the future.

摘要

大肠杆菌的 AcrB 三聚体多药外排转运蛋白泵出非常广泛的化合物。虽然米诺环素和阿霉素已在结合前体的周质域的大结合口袋内共结晶,但对于许多其他配体与该蛋白的结合情况仍一无所知。我们使用计算机对接来评估约 30 种化合物与结合前体的相互作用,发现其中许多化合物被预测与口袋一端的狭窄凹槽结合,而其他一些化合物则更喜欢与另一端的宽大洞穴结合。使用硝基头孢菌素外排和荧光素 5-马来酰亚胺共价标记 Phe615Cys 突变 AcrB 的竞争测定表明,假定的凹槽结合物相互竞争,但洞穴结合物不与凹槽结合物竞争,尽管测试的化合物数量有限。这些结果至少为我们提供了一个假设,以便将来通过更多的生化和遗传实验进行检验。

相似文献

1
Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6559-65. doi: 10.1073/pnas.1001460107. Epub 2010 Mar 8.
2
Some ligands enhance the efflux of other ligands by the Escherichia coli multidrug pump AcrB.
Biochemistry. 2013 Nov 19;52(46):8342-51. doi: 10.1021/bi401303v. Epub 2013 Nov 11.
3
Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli.
J Bacteriol. 2015 Oct;197(20):3255-64. doi: 10.1128/JB.00547-15. Epub 2015 Aug 3.
4
Effect of site-directed mutations in multidrug efflux pump AcrB examined by quantitative efflux assays.
Biochem Biophys Res Commun. 2016 Nov 25;480(4):552-557. doi: 10.1016/j.bbrc.2016.10.083. Epub 2016 Oct 24.
5
Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance.
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):878-886. doi: 10.1016/j.bbamem.2017.08.024. Epub 2017 Sep 8.
6
Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3509-14. doi: 10.1073/pnas.1602472113. Epub 2016 Mar 14.
7
Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors.
Antimicrob Agents Chemother. 2014 Oct;58(10):6224-34. doi: 10.1128/AAC.03283-14. Epub 2014 Aug 11.
8
Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20637-42. doi: 10.1073/pnas.1218348109. Epub 2012 Nov 21.

引用本文的文献

5
Functionally distinct mutations within AcrB underpin antibiotic resistance in different lifestyles.
NPJ Antimicrob Resist. 2023;1(1):2. doi: 10.1038/s44259-023-00001-8. Epub 2023 May 10.
6
Structural analysis of resistance-nodulation cell division transporters.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0019823. doi: 10.1128/mmbr.00198-23. Epub 2024 Mar 29.
7
10

本文引用的文献

2
A coordinated network of transporters with overlapping specificities provides a robust survival strategy.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9051-6. doi: 10.1073/pnas.0902400106. Epub 2009 May 18.
3
Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5854-8. doi: 10.1073/pnas.0901695106. Epub 2009 Mar 23.
4
Multidrug resistance in bacteria.
Annu Rev Biochem. 2009;78:119-46. doi: 10.1146/annurev.biochem.78.082907.145923.
5
Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism.
J Bacteriol. 2009 Mar;191(6):1729-37. doi: 10.1128/JB.01441-08. Epub 2008 Dec 5.
6
Mechanisms of RND multidrug efflux pumps.
Biochim Biophys Acta. 2009 May;1794(5):769-81. doi: 10.1016/j.bbapap.2008.10.004. Epub 2008 Nov 3.
7
Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance.
Antimicrob Agents Chemother. 2009 Jan;53(1):329-30. doi: 10.1128/AAC.00921-08. Epub 2008 Oct 20.
8
Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB.
J Bacteriol. 2008 Dec;190(24):8225-9. doi: 10.1128/JB.00912-08. Epub 2008 Oct 10.
9
Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB.
Nat Struct Mol Biol. 2008 Feb;15(2):199-205. doi: 10.1038/nsmb.1379. Epub 2008 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验