Suppr超能文献

耐药-结节-分裂(RND)外排泵转运蛋白的结构和功能多样性及其对抗菌药物耐药性的影响。

Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance.

机构信息

Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA.

Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA.

出版信息

Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0008923. doi: 10.1128/mmbr.00089-23. Epub 2024 Sep 5.

Abstract

SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.

摘要

摘要细菌外排泵的发现极大地促进了我们对细菌如何抵抗其遇到的细胞毒性化合物的理解。在结构和功能上不同的外排泵家族中,抗性-结节-分裂(RND)超家族的外排泵因其能够降低结构多样的抗菌药物的细胞内浓度而引人注目。RND 系统存在于许多革兰氏阴性菌中,包括引起严重人类疾病的细菌,并且经常导致对多种抗生素的耐药性。本文综述了临床重要病原体的三组分 RND 外排泵代表性转运蛋白的结构-功能关系的最新文献。我们强调了它们对细菌对抗生素、宿主防御抗菌药物和其他杀生物剂的耐药性的贡献,并强调了有助于细菌在面对抗菌药物时存活的外排转运蛋白之间的结构相似性和差异。此外,我们讨论了促进和推进外排泵研究的技术进步,并提出了将推进抗菌药物开发工作的未来研究领域。

相似文献

2
Resistance in gram-negative bacilli: the emergence of RND efflux pumps.
Future Microbiol. 2025 Aug;20(12):817-831. doi: 10.1080/17460913.2025.2536375. Epub 2025 Jul 31.
5
Identification of determinants that allow maintenance of high-level fluoroquinolone resistance in .
mBio. 2025 Jan 8;16(1):e0322124. doi: 10.1128/mbio.03221-24. Epub 2024 Nov 26.
6
Efflux pump systems as key contributors to multidrug resistance in Stenotrophomonas maltophilia: Physiological roles and gene regulation.
Acta Microbiol Immunol Hung. 2025 May 22;72(2):81-92. doi: 10.1556/030.2025.02578. Print 2025 Jun 20.
7
Molecular determinants of substrate specificity in the efflux pump CraA from .
Microbiol Spectr. 2025 Jul 7:e0111925. doi: 10.1128/spectrum.01119-25.
9
Structural Basis of Peptide-Based Antimicrobial Inhibition of a Resistance-Nodulation-Cell Division Multidrug Efflux Pump.
Microbiol Spectr. 2022 Oct 26;10(5):e0299022. doi: 10.1128/spectrum.02990-22. Epub 2022 Sep 19.
10
Bacterial efflux transporters' polyspecificity - a gift and a curse?
Curr Opin Microbiol. 2021 Jun;61:115-123. doi: 10.1016/j.mib.2021.03.009. Epub 2021 Apr 30.

引用本文的文献

1
Targeting Siderophore Biosynthesis to Thwart Microbial Growth.
Int J Mol Sci. 2025 Apr 11;26(8):3611. doi: 10.3390/ijms26083611.
2
A Review of In Silico and In Vitro Approaches in the Fight Against Carbapenem-Resistant Enterobacterales.
J Clin Lab Anal. 2025 May;39(9):e70018. doi: 10.1002/jcla.70018. Epub 2025 Apr 9.
3
Regulation, structure, and activity of the MexXY efflux system.
Antimicrob Agents Chemother. 2025 Apr 7;69(5):e0182524. doi: 10.1128/aac.01825-24.
4
Resistance of to Antibiotics During Long-Term Persistence in Patients with Cystic Fibrosis.
Antibiotics (Basel). 2025 Mar 14;14(3):302. doi: 10.3390/antibiotics14030302.
5
Determination of MexXY-OprM substrate profile in a major efflux knockout system reveals distinct antibiotic substrate classes.
Microbiol Spectr. 2025 Mar 4;13(3):e0290324. doi: 10.1128/spectrum.02903-24. Epub 2025 Feb 6.

本文引用的文献

1
Functionally distinct mutations within AcrB underpin antibiotic resistance in different lifestyles.
NPJ Antimicrob Resist. 2023;1(1):2. doi: 10.1038/s44259-023-00001-8. Epub 2023 May 10.
3
Significant Impact of AcrB Amino Acid Polymorphism at Residue 716 on Susceptibility to Tigecycline and Other Antibiotics in .
ACS Infect Dis. 2024 Feb 9;10(2):541-552. doi: 10.1021/acsinfecdis.3c00478. Epub 2024 Jan 5.
4
Pyridylpiperazine efflux pump inhibitor boosts in vivo antibiotic efficacy against K. pneumoniae.
EMBO Mol Med. 2024 Jan;16(1):93-111. doi: 10.1038/s44321-023-00007-9. Epub 2023 Dec 20.
5
Nonadditive functional interactions between ligand-binding sites of the multidrug efflux pump AdeB from .
J Bacteriol. 2024 Jan 25;206(1):e0021723. doi: 10.1128/jb.00217-23. Epub 2023 Oct 18.
6
Molecular drivers of resistance to sulbactam-durlobactam in contemporary clinical isolates of .
Antimicrob Agents Chemother. 2023 Nov 15;67(11):e0066523. doi: 10.1128/aac.00665-23. Epub 2023 Oct 16.
8
Molecular determinants of avoidance and inhibition of MexB efflux pump.
mBio. 2023 Aug 31;14(4):e0140323. doi: 10.1128/mbio.01403-23. Epub 2023 Jul 26.
9
Crystal structures of multidrug efflux transporters from suggest details of transport mechanism.
Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2215072120. doi: 10.1073/pnas.2215072120. Epub 2023 Jul 10.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验