Suppr超能文献

光笼 t7 RNA 聚合酶用于原核和真核细胞中转录和基因功能的光激活。

Photocaged t7 RNA polymerase for the light activation of transcription and gene function in pro- and eukaryotic cells.

机构信息

Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

Chembiochem. 2010 May 3;11(7):972-7. doi: 10.1002/cbic.201000041.

Abstract

A light-activatable bacteriophage T7 RNA polymerase (T7RNAP) has been generated through the site-specific introduction of a photocaged tyrosine residue at the crucial position Tyr639 within the active site of the enzyme. The photocaged tyrosine disrupts polymerase activity by blocking the incoming nucleotide from reaching the active site of the enzyme. However, a brief irradiation with nonphototoxic UV light of 365 nm removes the ortho-nitrobenzyl caging group from Tyr639 and restores the RNA polymerase activity of T7RNAP. The complete orthogonality of T7RNAP to all endogenous RNA polymerases in pro- and eukaryotic systems allowed for the photochemical activation of gene expression in bacterial and mammalian cells. Specifically, E. coli cells were engineered to produce photocaged T7RNAP in the presence of a GFP reporter gene under the control of a T7 promoter. UV irradiation of these cells led to the spatiotemporal activation of GFP expression. In an analogous fashion, caged T7RNAP was transfected into human embryonic kidney (HEK293T) cells. Irradiation with UV light led to the activation of T7RNAP, thereby inducing RNA polymerization and expression of a luciferase reporter gene in tissue culture. The ability to achieve spatiotemporal regulation of orthogonal RNA synthesis enables the precise dissection and manipulation of a wide range of cellular events, including gene function.

摘要

一种光激活的噬菌体 T7 RNA 聚合酶(T7RNAP)通过在酶的活性位点内关键位置 Tyr639 处特异性引入光笼酪氨酸残基而产生。光笼酪氨酸通过阻止进入的核苷酸到达酶的活性位点来破坏聚合酶活性。然而,用非光毒性的 365nm 紫外光短暂照射会从 Tyr639 上去除邻硝基苄基笼状基团,并恢复 T7RNAP 的 RNA 聚合酶活性。T7RNAP 与原核和真核生物系统中所有内源性 RNA 聚合酶的完全正交性允许在细菌和哺乳动物细胞中进行光化学基因表达的激活。具体来说,通过 GFP 报告基因在 T7 启动子的控制下,工程菌细胞被设计为在存在 GFP 报告基因的情况下产生光笼 T7RNAP。对这些细胞进行 UV 照射会导致 GFP 表达的时空激活。以类似的方式,将光笼 T7RNAP 转染到人胚肾(HEK293T)细胞中。用紫外光照射会导致 T7RNAP 的激活,从而诱导 RNA 聚合酶和组织培养中荧光素酶报告基因的表达。实现正交 RNA 合成时空调节的能力使我们能够精确剖析和操纵广泛的细胞事件,包括基因功能。

相似文献

3
Building an Inducible T7 RNA Polymerase/T7 Promoter Circuit in Synechocystis sp. PCC6803.
ACS Synth Biol. 2019 Apr 19;8(4):655-660. doi: 10.1021/acssynbio.8b00515. Epub 2019 Apr 3.
5
Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.
ACS Synth Biol. 2017 Nov 17;6(11):2157-2167. doi: 10.1021/acssynbio.7b00169. Epub 2017 Oct 18.
9
The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm.
Int J Biol Macromol. 2018 Oct 15;118(Pt A):49-56. doi: 10.1016/j.ijbiomac.2018.05.198. Epub 2018 May 27.
10
Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase.
DNA Repair (Amst). 2008 Aug 2;7(8):1276-88. doi: 10.1016/j.dnarep.2008.04.007. Epub 2008 Jun 13.

引用本文的文献

1
Photocontrolling the Enantioselectivity of a Phosphotriesterase via Incorporation of a Light-Responsive Unnatural Amino Acid.
JACS Au. 2025 Feb 5;5(2):858-870. doi: 10.1021/jacsau.4c01106. eCollection 2025 Feb 24.
2
Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion.
Chem Rev. 2025 Feb 26;125(4):1663-1717. doi: 10.1021/acs.chemrev.4c00224. Epub 2025 Feb 10.
3
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
4
Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light.
Front Bioeng Biotechnol. 2024 Oct 11;12:1324757. doi: 10.3389/fbioe.2024.1324757. eCollection 2024.
5
Light-Activated Gene Expression System Using a Caging-Group-Free Photoactivatable Dye.
Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202416420. doi: 10.1002/anie.202416420. Epub 2024 Nov 16.
6
Optogenetic Tools for Regulating RNA Metabolism and Functions.
Chembiochem. 2024 Dec 16;25(24):e202400615. doi: 10.1002/cbic.202400615. Epub 2024 Nov 4.
7
Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.
Chem Rev. 2024 Sep 25;124(18):10577-10617. doi: 10.1021/acs.chemrev.3c00938. Epub 2024 Aug 29.
8
Noncanonical Amino Acids in Biocatalysis.
Chem Rev. 2024 Jul 24;124(14):8740-8786. doi: 10.1021/acs.chemrev.4c00120. Epub 2024 Jul 3.
9
Applications of genetic code expansion technology in eukaryotes.
Protein Cell. 2024 May 7;15(5):331-363. doi: 10.1093/procel/pwad051.

本文引用的文献

1
Principles and applications of the photochemical control of cellular processes.
Chembiochem. 2010 Jan 4;11(1):47-53. doi: 10.1002/cbic.200900529.
2
Light activation as a method of regulating and studying gene expression.
Curr Opin Chem Biol. 2009 Dec;13(5-6):678-86. doi: 10.1016/j.cbpa.2009.09.026. Epub 2009 Oct 24.
3
A light-activated DNA polymerase.
Angew Chem Int Ed Engl. 2009;48(32):5950-3. doi: 10.1002/anie.200901115.
5
Caged siRNAs for spatiotemporal control of gene silencing.
Mol Pharm. 2009 May-Jun;6(3):669-85. doi: 10.1021/mp900082q.
7
Light-activation of gene function in mammalian cells via ribozymes.
Chem Commun (Camb). 2009 Feb 7(5):568-70. doi: 10.1039/b819375d. Epub 2008 Dec 2.
8
Improved synthesis of polyfluorinated L-lysine for 19F NMR-based screening.
Mol Divers. 2009 Feb;13(1):53-6. doi: 10.1007/s11030-008-9097-5. Epub 2008 Nov 22.
9
Gene silencing in mammalian cells with light-activated antisense agents.
Chembiochem. 2008 Dec 15;9(18):2937-40. doi: 10.1002/cbic.200800627.
10
Photochemical activation of protein expression in bacterial cells.
Angew Chem Int Ed Engl. 2007;46(23):4290-2. doi: 10.1002/anie.200700057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验