Suppr超能文献

用于哺乳动物细胞中基因表达和基因沉默的时空控制的基因编码光激活转录。

Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells.

作者信息

Hemphill James, Chou Chungjung, Chin Jason W, Deiters Alexander

机构信息

Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States.

出版信息

J Am Chem Soc. 2013 Sep 11;135(36):13433-9. doi: 10.1021/ja4051026. Epub 2013 Aug 27.

Abstract

Photocaging provides a method to spatially and temporally control biological function and gene expression with high resolution. Proteins can be photochemically controlled through the site-specific installation of caging groups on amino acid side chains that are essential for protein function. The photocaging of a synthetic gene network using unnatural amino acid mutagenesis in mammalian cells was demonstrated with an engineered bacteriophage RNA polymerase. A caged T7 RNA polymerase was expressed in cells with an expanded genetic code and used in the photochemical activation of genes under control of an orthogonal T7 promoter, demonstrating tight spatial and temporal control. The synthetic gene expression system was validated with two reporter genes (luciferase and EGFP) and applied to the light-triggered transcription of short hairpin RNA constructs for the induction of RNA interference.

摘要

光笼化提供了一种在空间和时间上以高分辨率控制生物功能和基因表达的方法。通过在对蛋白质功能至关重要的氨基酸侧链上进行位点特异性安装笼化基团,可以对蛋白质进行光化学控制。利用工程化的噬菌体RNA聚合酶,在哺乳动物细胞中通过非天然氨基酸诱变对合成基因网络进行了光笼化。一种笼化的T7 RNA聚合酶在具有扩展遗传密码的细胞中表达,并用于在正交T7启动子控制下的基因光化学激活,证明了严格的空间和时间控制。该合成基因表达系统用两个报告基因(荧光素酶和增强型绿色荧光蛋白)进行了验证,并应用于短发夹RNA构建体的光触发转录以诱导RNA干扰。

相似文献

5
An inducible T7 RNA polymerase-dependent plasmid system.
Mol Biotechnol. 2006 May;33(1):13-21. doi: 10.1385/mb:33:1:13.
7
Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.
ACS Synth Biol. 2017 Nov 17;6(11):2157-2167. doi: 10.1021/acssynbio.7b00169. Epub 2017 Oct 18.
8
Construction of synthetic T7 RNA polymerase expression systems.
Methods. 2018 Jul 1;143:110-120. doi: 10.1016/j.ymeth.2018.02.022. Epub 2018 Mar 5.
9

引用本文的文献

1
Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion.
Chem Rev. 2025 Feb 26;125(4):1663-1717. doi: 10.1021/acs.chemrev.4c00224. Epub 2025 Feb 10.
2
Photochemically Triggered, Transient, and Oscillatory Transcription Machineries Guide Temporal Modulation of Fibrinogenesis.
J Am Chem Soc. 2025 Jan 15;147(2):2216-2227. doi: 10.1021/jacs.4c16829. Epub 2024 Dec 31.
3
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
4
Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light.
Front Bioeng Biotechnol. 2024 Oct 11;12:1324757. doi: 10.3389/fbioe.2024.1324757. eCollection 2024.
5
Light-Activated Gene Expression System Using a Caging-Group-Free Photoactivatable Dye.
Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202416420. doi: 10.1002/anie.202416420. Epub 2024 Nov 16.
6
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
7
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
8
Noncanonical Amino Acids in Biocatalysis.
Chem Rev. 2024 Jul 24;124(14):8740-8786. doi: 10.1021/acs.chemrev.4c00120. Epub 2024 Jul 3.
9
Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion.
Chem Rev. 2024 Aug 28;124(16):9580-9608. doi: 10.1021/acs.chemrev.4c00031. Epub 2024 Jul 2.
10
Blocking and rescuing tryptophan interactions.
Nat Chem. 2024 Apr;16(4):485-486. doi: 10.1038/s41557-024-01478-0.

本文引用的文献

1
Optical control of mammalian endogenous transcription and epigenetic states.
Nature. 2013 Aug 22;500(7463):472-476. doi: 10.1038/nature12466. Epub 2013 Aug 23.
2
Short hairpin RNA-mediated gene silencing.
Methods Mol Biol. 2013;942:205-32. doi: 10.1007/978-1-62703-119-6_12.
3
Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors.
J Am Chem Soc. 2012 Oct 10;134(40):16480-3. doi: 10.1021/ja3065667. Epub 2012 Sep 27.
4
Light-controlled tools.
Angew Chem Int Ed Engl. 2012 Aug 20;51(34):8446-76. doi: 10.1002/anie.201202134. Epub 2012 Jul 24.
5
Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine.
J Am Chem Soc. 2012 Jul 25;134(29):11912-5. doi: 10.1021/ja3046958. Epub 2012 Jul 12.
6
Rewiring translation - Genetic code expansion and its applications.
FEBS Lett. 2012 Jul 16;586(15):2057-64. doi: 10.1016/j.febslet.2012.02.002. Epub 2012 Feb 13.
7
Light-controlled synthetic gene circuits.
Curr Opin Chem Biol. 2012 Aug;16(3-4):292-9. doi: 10.1016/j.cbpa.2012.04.010. Epub 2012 May 25.
8
Designer proteins: applications of genetic code expansion in cell biology.
Nat Rev Mol Cell Biol. 2012 Feb 15;13(3):168-82. doi: 10.1038/nrm3286.
9
Reprogramming the genetic code: from triplet to quadruplet codes.
Angew Chem Int Ed Engl. 2012 Mar 5;51(10):2288-97. doi: 10.1002/anie.201105016. Epub 2012 Jan 19.
10
Recent advances in genetic code engineering in Escherichia coli.
Curr Opin Biotechnol. 2012 Oct;23(5):751-7. doi: 10.1016/j.copbio.2011.12.027. Epub 2012 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验