Suppr超能文献

SRP RNA 与 SRP 受体之间的瞬时连接可确保共翻译蛋白质靶向过程中有效递货运送。

Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7698-703. doi: 10.1073/pnas.1002968107. Epub 2010 Apr 12.

Abstract

Kinetic control of macromolecular interactions plays key roles in biological regulation. An example of such control occurs in cotranslational protein targeting by the signal recognition particle (SRP), during which the SRP RNA and the cargo both accelerate complex assembly between the SRP and SRP receptor FtsY 10(2)-fold. The molecular mechanism underlying these rate accelerations was unclear. Here we show that a highly conserved basic residue, Lys399, on the lateral surface of FtsY provides a novel RNA tetraloop receptor to mediate the SRP RNA- and cargo-induced acceleration of SRP-FtsY complex assembly. We propose that the SRP RNA, by using its tetraloop to interact with FtsY-Lys399, provides a transient tether to stabilize the early stage and transition state of complex formation; this accelerates the assembly of a stable SRP-FtsY complex and allows the loading of cargo to be efficiently coupled to its membrane delivery. The use of a transient tether to increase the lifetime of collisional intermediates and reduce the dimension of diffusional search represents a novel and effective mechanism to accelerate macromolecular interactions.

摘要

动力学控制在生物调控中发挥着关键作用。这种控制的一个例子发生在信号识别颗粒 (SRP) 的共翻译蛋白靶向中,在此过程中,SRP RNA 和货物都加速了 SRP 和 SRP 受体 FtsY 之间的复合物组装 10 倍。这些速率加速的分子机制尚不清楚。在这里,我们表明 FtsY 侧表面上的高度保守的碱性残基 Lys399 提供了一种新的 RNA 四联体环受体,以介导 SRP RNA 和货物诱导的 SRP-FtsY 复合物组装的加速。我们提出,SRP RNA 通过使用其四联体环与 FtsY-Lys399 相互作用,提供了一个瞬时系链来稳定复合物形成的早期阶段和过渡态;这加速了稳定的 SRP-FtsY 复合物的组装,并允许货物的加载有效地与其膜传递偶联。使用瞬时系链来增加碰撞中间体的寿命并降低扩散搜索的维度,代表了一种新颖且有效的加速大分子相互作用的机制。

相似文献

1
Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7698-703. doi: 10.1073/pnas.1002968107. Epub 2010 Apr 12.
5
Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY.
RNA. 2001 Feb;7(2):293-301. doi: 10.1017/s1355838201002205.
6
Signal sequence-independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle.
Mol Biol Cell. 2011 Jul 1;22(13):2309-23. doi: 10.1091/mbc.E11-02-0152. Epub 2011 May 5.
7
A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor.
J Mol Biol. 2008 Mar 28;377(3):761-73. doi: 10.1016/j.jmb.2008.01.040. Epub 2008 Jan 26.
8
The bacterial SRP receptor, FtsY, is activated on binding to the translocon.
Mol Microbiol. 2016 Oct;102(1):152-67. doi: 10.1111/mmi.13452. Epub 2016 Jul 19.
10
Structural basis of signal sequence surveillance and selection by the SRP-FtsY complex.
Nat Struct Mol Biol. 2013 May;20(5):604-10. doi: 10.1038/nsmb.2546. Epub 2013 Apr 7.

引用本文的文献

1
Mechanistic Insights into Protein Biogenesis and Maturation on the Ribosome.
J Mol Biol. 2025 Feb 28:169056. doi: 10.1016/j.jmb.2025.169056.
2
Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing.
RNA Biol. 2024 Jan;21(1):1-15. doi: 10.1080/15476286.2024.2314846. Epub 2024 Feb 19.
3
Signal Recognition Particle RNA Contributes to Oxidative Stress Response in by Modulating Catalase Localization.
Front Microbiol. 2020 Dec 18;11:613571. doi: 10.3389/fmicb.2020.613571. eCollection 2020.
4
A molecular recognition feature mediates ribosome-induced SRP-receptor assembly during protein targeting.
J Cell Biol. 2019 Oct 7;218(10):3307-3319. doi: 10.1083/jcb.201901001. Epub 2019 Sep 19.
5
Ribosome-Associated Chloroplast SRP54 Enables Efficient Cotranslational Membrane Insertion of Key Photosynthetic Proteins.
Plant Cell. 2019 Nov;31(11):2734-2750. doi: 10.1105/tpc.19.00169. Epub 2019 Aug 23.
6
Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models.
J Am Stat Assoc. 2016;111(515):951-966. doi: 10.1080/01621459.2016.1140050. Epub 2016 Oct 18.
9
Co-evolution of Two GTPases Enables Efficient Protein Targeting in an RNA-less Chloroplast Signal Recognition Particle Pathway.
J Biol Chem. 2017 Jan 6;292(1):386-396. doi: 10.1074/jbc.M116.752931. Epub 2016 Nov 28.

本文引用的文献

1
Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.
PLoS Biol. 2009 Oct;7(10):e1000212. doi: 10.1371/journal.pbio.1000212. Epub 2009 Oct 6.
3
It takes two to tango: regulation of G proteins by dimerization.
Nat Rev Mol Cell Biol. 2009 Jun;10(6):423-9. doi: 10.1038/nrm2689. Epub 2009 May 8.
4
Multiple conformational switches in a GTPase complex control co-translational protein targeting.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1754-9. doi: 10.1073/pnas.0808573106. Epub 2009 Jan 27.
5
SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction.
Nat Struct Mol Biol. 2008 Sep;15(9):916-23. doi: 10.1038/nsmb.1467.
6
Signal sequences activate the catalytic switch of SRP RNA.
Science. 2009 Jan 2;323(5910):127-30. doi: 10.1126/science.1165971.
7
Evolutionary substitution of two amino acids in chloroplast SRP54 of higher plants cause its inability to bind SRP RNA.
FEBS Lett. 2008 Sep 22;582(21-22):3223-9. doi: 10.1016/j.febslet.2008.08.014. Epub 2008 Aug 26.
10
Generation of ribosome nascent chain complexes for structural and functional studies.
J Struct Biol. 2007 Jun;158(3):463-71. doi: 10.1016/j.jsb.2007.01.005. Epub 2007 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验