Suppr超能文献

果蝇中piRNA与转座子控制途径的分子进化

Molecular evolution of piRNA and transposon control pathways in Drosophila.

作者信息

Malone C D, Hannon G J

机构信息

Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

出版信息

Cold Spring Harb Symp Quant Biol. 2009;74:225-34. doi: 10.1101/sqb.2009.74.052. Epub 2010 May 7.

Abstract

The mere prevalence and potential mobilization of transposable elements in eukaryotic genomes present challenges at both the organismal and population levels. Not only is transposition able to alter gene function and chromosomal structure, but loss of control over even a single active element in the germline can create an evolutionary dead end. Despite the dangers of coexistence, transposons and their activity have been shown to drive the evolution of gene function, chromosomal organization, and even population dynamics (Kazazian 2004). This implies that organisms have adopted elaborate means to balance both the positive and detrimental consequences of transposon activity. In this chapter, we focus on the fruit fly to explore some of the molecular clues into the long- and short-term adaptation to transposon colonization and persistence within eukaryotic genomes.

摘要

转座元件在真核生物基因组中的普遍存在及其潜在的移动性,在生物体和种群层面都带来了挑战。转座不仅能够改变基因功能和染色体结构,而且生殖系中哪怕一个活性元件的失控都可能导致进化的死胡同。尽管存在共存的危险,但转座子及其活性已被证明可推动基因功能、染色体组织乃至种群动态的进化(卡扎齐安,2004年)。这意味着生物体已经采取了复杂的手段来平衡转座子活性的正面和负面后果。在本章中,我们将聚焦果蝇,探索一些分子线索,以了解真核生物基因组对转座子定植和持续存在的长期和短期适应性。

相似文献

1
Molecular evolution of piRNA and transposon control pathways in Drosophila.
Cold Spring Harb Symp Quant Biol. 2009;74:225-34. doi: 10.1101/sqb.2009.74.052. Epub 2010 May 7.
3
Channel nuclear pore complex subunits are required for transposon silencing in .
Elife. 2021 Apr 15;10:e66321. doi: 10.7554/eLife.66321.
4
piRNA-mediated regulation of transposon alternative splicing in the soma and germ line.
Nature. 2017 Dec 14;552(7684):268-272. doi: 10.1038/nature25018. Epub 2017 Dec 6.
5
Silencing transposable elements in the Drosophila germline.
Cell Mol Life Sci. 2017 Feb;74(3):435-448. doi: 10.1007/s00018-016-2353-4. Epub 2016 Sep 6.
6
Two distinct transcriptional controls triggered by nuclear Piwi-piRISCs in the Drosophila piRNA pathway.
Curr Opin Struct Biol. 2018 Dec;53:69-76. doi: 10.1016/j.sbi.2018.06.005. Epub 2018 Jul 7.
8
The ZAD zinc finger protein Kipferl guides Rhino to piRNA clusters.
Elife. 2022 Oct 4;11:e80067. doi: 10.7554/eLife.80067.
9
Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation.
Mol Cell. 2021 Oct 7;81(19):3965-3978.e5. doi: 10.1016/j.molcel.2021.07.011. Epub 2021 Aug 4.

引用本文的文献

2
Rapid evolutionary diversification of the flamenco locus across simulans clade Drosophila species.
PLoS Genet. 2023 Aug 29;19(8):e1010914. doi: 10.1371/journal.pgen.1010914. eCollection 2023 Aug.
3
Interrelated grid of non-coding RNA: An important aspect in Rheumatoid Arthritis pathogenesis.
Mol Biol Rep. 2023 Jul;50(7):6217-6232. doi: 10.1007/s11033-023-08543-w. Epub 2023 Jun 9.
4
Indel driven rapid evolution of core nuclear pore protein gene promoters.
Sci Rep. 2023 May 17;13(1):8035. doi: 10.1038/s41598-023-34985-0.
5
Amniotes co-opt intrinsic genetic instability to protect germ-line genome integrity.
Nat Commun. 2023 Feb 13;14(1):812. doi: 10.1038/s41467-023-36354-x.
6
The Transposable Elements of the Drosophila serrata Reference Panel.
Genome Biol Evol. 2021 Sep 1;13(9). doi: 10.1093/gbe/evab100.
7
Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity.
PLoS Genet. 2020 Jun 11;16(6):e1008861. doi: 10.1371/journal.pgen.1008861. eCollection 2020 Jun.
8
A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage.
PLoS Genet. 2020 Mar 13;16(3):e1008648. doi: 10.1371/journal.pgen.1008648. eCollection 2020 Mar.
9
The USTC co-opts an ancient machinery to drive piRNA transcription in .
Genes Dev. 2019 Jan 1;33(1-2):90-102. doi: 10.1101/gad.319293.118. Epub 2018 Dec 19.
10
A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance.
Front Cell Dev Biol. 2018 May 15;6:50. doi: 10.3389/fcell.2018.00050. eCollection 2018.

本文引用的文献

1
Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species.
Science. 2009 Dec 11;326(5959):1538-41. doi: 10.1126/science.1181756.
3
A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila.
Nature. 2009 Oct 29;461(7268):1296-9. doi: 10.1038/nature08501. Epub 2009 Oct 7.
4
Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line.
Genome Res. 2009 Oct;19(10):1776-85. doi: 10.1101/gr.094896.109. Epub 2009 Jun 18.
5
Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary.
Cell. 2009 May 1;137(3):522-35. doi: 10.1016/j.cell.2009.03.040. Epub 2009 Apr 23.
6
Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies.
Cell. 2009 May 1;137(3):509-21. doi: 10.1016/j.cell.2009.04.027. Epub 2009 Apr 23.
7
Small RNAs as guardians of the genome.
Cell. 2009 Feb 20;136(4):656-68. doi: 10.1016/j.cell.2009.01.045.
8
Epigenetic reprogramming and small RNA silencing of transposable elements in pollen.
Cell. 2009 Feb 6;136(3):461-72. doi: 10.1016/j.cell.2008.12.038.
9
Genetic interactions between transcription factors cause natural variation in yeast.
Science. 2009 Jan 23;323(5913):498-501. doi: 10.1126/science.1166426.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验