Suppr超能文献

配体特异性 c-Fos 表达源于 ErbB 网络动力学的时空控制。

Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics.

机构信息

Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.

出版信息

Cell. 2010 May 28;141(5):884-96. doi: 10.1016/j.cell.2010.03.054. Epub 2010 May 20.

Abstract

Activation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) determines distinct cell-fate decisions, although signals propagate through shared pathways. Using mathematical modeling and experimental approaches, we unravel how HRG and EGF generate distinct, all-or-none responses of the phosphorylated transcription factor c-Fos. In the cytosol, EGF induces transient and HRG induces sustained ERK activation. In the nucleus, however, ERK activity and c-fos mRNA expression are transient for both ligands. Knockdown of dual-specificity phosphatases extends HRG-stimulated nuclear ERK activation, but not c-fos mRNA expression, implying the existence of a HRG-induced repressor of c-fos transcription. Further experiments confirmed that this repressor is mainly induced by HRG, but not EGF, and requires new protein synthesis. We show how a spatially distributed, signaling-transcription cascade robustly discriminates between transient and sustained ERK activities at the c-Fos system level. The proposed control mechanisms are general and operate in different cell types, stimulated by various ligands.

摘要

表皮生长因子 (EGF) 或人表皮生长因子 (HRG) 激活 ErbB 受体决定了不同的细胞命运决定,尽管信号通过共享途径传播。我们使用数学建模和实验方法,揭示了 HRG 和 EGF 如何产生磷酸化转录因子 c-Fos 的不同、全有或全无的反应。在细胞质中,EGF 诱导瞬时和 HRG 诱导持续的 ERK 激活。然而,在核内,两种配体的 ERK 活性和 c-fos mRNA 表达都是瞬时的。双特异性磷酸酶的敲低延长了 HRG 刺激的核 ERK 激活,但不延长 c-fos mRNA 表达,这意味着存在 HRG 诱导的 c-fos 转录抑制剂。进一步的实验证实,这种抑制剂主要由 HRG 诱导,而不是 EGF 诱导,并且需要新的蛋白质合成。我们展示了一个空间分布的信号转导级联如何在 c-Fos 系统水平上稳健地区分瞬时和持续的 ERK 活性。所提出的控制机制是通用的,并且在不同的细胞类型中起作用,受各种配体的刺激。

相似文献

1
Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics.
Cell. 2010 May 28;141(5):884-96. doi: 10.1016/j.cell.2010.03.054. Epub 2010 May 20.
2
Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation.
J Biol Chem. 2007 Feb 9;282(6):4045-56. doi: 10.1074/jbc.M608653200. Epub 2006 Dec 1.
3
Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses.
Mol Syst Biol. 2007;3:144. doi: 10.1038/msb4100188. Epub 2007 Nov 13.
8
Robustness analysis of the detailed kinetic model of an ErbB signaling network by using dynamic sensitivity.
PLoS One. 2017 May 24;12(5):e0178250. doi: 10.1371/journal.pone.0178250. eCollection 2017.

引用本文的文献

1
Mechanistic modeling of cell viability assays with in silico lineage tracing.
PLoS Comput Biol. 2025 Aug 29;21(8):e1013156. doi: 10.1371/journal.pcbi.1013156. eCollection 2025 Aug.
3
Deciphering the history of ERK activity from fixed-cell immunofluorescence measurements.
Nat Commun. 2025 May 21;16(1):4721. doi: 10.1038/s41467-025-58348-7.
4
A Frequency Domain Analysis of the Growth Factor-Driven Extra-Cellular-Regulated Kinase (ERK) Pathway.
Biology (Basel). 2025 Apr 5;14(4):374. doi: 10.3390/biology14040374.
5
Two Novel Red-FRET ERK Biosensors in the 670-720nm Range.
bioRxiv. 2024 Dec 2:2024.11.30.626109. doi: 10.1101/2024.11.30.626109.
7
Targeting MCH Neuroendocrine Circuit in Lateral Hypothalamus to Protect Against Skeletal Senescence.
Adv Sci (Weinh). 2024 Nov;11(43):e2309951. doi: 10.1002/advs.202309951. Epub 2024 Sep 25.
8
Mechanistic modeling of cell viability assays with lineage tracing.
bioRxiv. 2024 Aug 26:2024.08.23.609433. doi: 10.1101/2024.08.23.609433.
9
Cell State Transition Models Stratify Breast Cancer Cell Phenotypes and Reveal New Therapeutic Targets.
Cancers (Basel). 2024 Jun 27;16(13):2354. doi: 10.3390/cancers16132354.
10
Low-frequency ERK and Akt activity dynamics are predictive of stochastic cell division events.
NPJ Syst Biol Appl. 2024 Jun 4;10(1):65. doi: 10.1038/s41540-024-00389-7.

本文引用的文献

2
Spatiotemporal regulation of ERK2 by dual specificity phosphatases.
J Biol Chem. 2008 Sep 26;283(39):26612-23. doi: 10.1074/jbc.M801500200. Epub 2008 Jul 23.
3
The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae.
Science. 2008 Jan 25;319(5862):482-4. doi: 10.1126/science.1151582.
4
Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses.
Mol Syst Biol. 2007;3:144. doi: 10.1038/msb4100188. Epub 2007 Nov 13.
5
Untangling the signalling wires.
Nat Cell Biol. 2007 Mar;9(3):247-9. doi: 10.1038/ncb0307-247.
6
Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate.
Nat Cell Biol. 2007 Mar;9(3):324-30. doi: 10.1038/ncb1543. Epub 2007 Feb 18.
8
Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation.
J Biol Chem. 2007 Feb 9;282(6):4045-56. doi: 10.1074/jbc.M608653200. Epub 2006 Dec 1.
9
Direct observation of individual endogenous protein complexes in situ by proximity ligation.
Nat Methods. 2006 Dec;3(12):995-1000. doi: 10.1038/nmeth947. Epub 2006 Oct 29.
10
EGF-ERBB signalling: towards the systems level.
Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16. doi: 10.1038/nrm1962.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验