Suppr超能文献

使用基于知识的势对提交模型进行持续改进。

Consistent refinement of submitted models at CASP using a knowledge-based potential.

机构信息

Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.

出版信息

Proteins. 2010 Sep;78(12):2668-78. doi: 10.1002/prot.22781.

Abstract

Protein structure refinement is an important but unsolved problem; it must be solved if we are to predict biological function that is very sensitive to structural details. Specifically, critical assessment of techniques for protein structure prediction (CASP) shows that the accuracy of predictions in the comparative modeling category is often worse than that of the template on which the homology model is based. Here we describe a refinement protocol that is able to consistently refine submitted predictions for all categories at CASP7. The protocol uses direct energy minimization of the knowledge-based potential of mean force that is based on the interaction statistics of 167 atom types (Summa and Levitt, Proc Natl Acad Sci USA 2007; 104:3177-3182). Our protocol is thus computationally very efficient; it only takes a few minutes of CPU time to run typical protein models (300 residues). We observe an average structural improvement of 1% in GDT_TS, for predictions that have low and medium homology to known PDB structures (Global Distance Test score or GDT_TS between 50 and 80%). We also observe a marked improvement in the stereochemistry of the models. The level of improvement varies amongst the various participants at CASP, but we see large improvements (>10% increase in GDT_TS) even for models predicted by the best performing groups at CASP7. In addition, our protocol consistently improved the best predicted models in the refinement category at CASP7 and CASP8. These improvements in structure and stereochemistry prove the usefulness of our computationally inexpensive, powerful and automatic refinement protocol.

摘要

蛋白质结构精修是一个重要但尚未解决的问题;如果我们要预测对结构细节非常敏感的生物学功能,就必须解决这个问题。具体来说,蛋白质结构预测技术的关键评估(CASP)表明,同源建模类别中预测的准确性通常比基于同源模板的预测准确性差。在这里,我们描述了一种能够一致地改进 CASP7 所有类别提交预测的精修方案。该方案使用基于 167 种原子类型相互作用统计的基于知识的平均力势能的直接能量最小化(Summa 和 Levitt,Proc Natl Acad Sci USA 2007;104:3177-3182)。因此,我们的方案在计算上非常高效;运行典型的蛋白质模型(300 个残基)只需几分钟的 CPU 时间。我们观察到,对于与已知 PDB 结构具有低和中等同源性的预测(全局距离测试分数或 GDT_TS 在 50 到 80%之间),平均结构改进为 1%。我们还观察到模型立体化学的显著改善。在 CASP 中的各个参与者中,改进的程度有所不同,但我们甚至看到了很大的改进(GDT_TS 增加超过 10%),即使对于 CASP7 中表现最好的组预测的模型也是如此。此外,我们的方案在 CASP7 和 CASP8 的精修类别中一致地改进了预测最好的模型。这些结构和立体化学的改进证明了我们计算成本低、功能强大且自动的精修方案的有效性。

相似文献

1
Consistent refinement of submitted models at CASP using a knowledge-based potential.
Proteins. 2010 Sep;78(12):2668-78. doi: 10.1002/prot.22781.
4
KoBaMIN: a knowledge-based minimization web server for protein structure refinement.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W323-8. doi: 10.1093/nar/gks376. Epub 2012 May 7.
5
Princeton_TIGRESS: protein geometry refinement using simulations and support vector machines.
Proteins. 2014 May;82(5):794-814. doi: 10.1002/prot.24459. Epub 2013 Nov 22.
6
i3Drefine software for protein 3D structure refinement and its assessment in CASP10.
PLoS One. 2013 Jul 19;8(7):e69648. doi: 10.1371/journal.pone.0069648. Print 2013.
7
Assessment of refinement of template-based models in CASP11.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):260-81. doi: 10.1002/prot.25048. Epub 2016 Jun 15.
8
Evaluation of predictions in the CASP10 model refinement category.
Proteins. 2014 Feb;82 Suppl 2(Suppl 2):98-111. doi: 10.1002/prot.24377. Epub 2014 Jan 3.
9
Assessment of the model refinement category in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):152-167. doi: 10.1002/prot.25409. Epub 2017 Nov 29.
10
Structure prediction for CASP8 with all-atom refinement using Rosetta.
Proteins. 2009;77 Suppl 9(0 9):89-99. doi: 10.1002/prot.22540.

引用本文的文献

1
Improved Sampling Strategies for Protein Model Refinement Based on Molecular Dynamics Simulation.
J Chem Theory Comput. 2021 Mar 9;17(3):1931-1943. doi: 10.1021/acs.jctc.0c01238. Epub 2021 Feb 9.
2
CANDOCK: Chemical Atomic Network-Based Hierarchical Flexible Docking Algorithm Using Generalized Statistical Potentials.
J Chem Inf Model. 2020 Mar 23;60(3):1509-1527. doi: 10.1021/acs.jcim.9b00686. Epub 2020 Mar 3.
3
Computational reconstruction of atomistic protein structures from coarse-grained models.
Comput Struct Biotechnol J. 2019 Dec 26;18:162-176. doi: 10.1016/j.csbj.2019.12.007. eCollection 2020.
4
Revisiting the "satisfaction of spatial restraints" approach of MODELLER for protein homology modeling.
PLoS Comput Biol. 2019 Dec 17;15(12):e1007219. doi: 10.1371/journal.pcbi.1007219. eCollection 2019 Dec.
5
Methods for the Refinement of Protein Structure 3D Models.
Int J Mol Sci. 2019 May 9;20(9):2301. doi: 10.3390/ijms20092301.
7
Assessment of the model refinement category in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):152-167. doi: 10.1002/prot.25409. Epub 2017 Nov 29.
8
GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking.
J Comput Aided Mol Des. 2017 Jul;31(7):653-666. doi: 10.1007/s10822-017-0030-9. Epub 2017 Jun 16.
9
Combating Ebola with Repurposed Therapeutics Using the CANDO Platform.
Molecules. 2016 Nov 25;21(12):1537. doi: 10.3390/molecules21121537.
10
Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform.
Curr Pharm Des. 2016;22(21):3109-23. doi: 10.2174/1381612822666160325121943.

本文引用的文献

1
Assessment of the protein-structure refinement category in CASP8.
Proteins. 2009;77 Suppl 9(Suppl 9):66-80. doi: 10.1002/prot.22538.
2
Improved prediction of protein side-chain conformations with SCWRL4.
Proteins. 2009 Dec;77(4):778-95. doi: 10.1002/prot.22488.
3
Refinement of protein structures into low-resolution density maps using rosetta.
J Mol Biol. 2009 Sep 11;392(1):181-90. doi: 10.1016/j.jmb.2009.07.008. Epub 2009 Jul 8.
4
Solvent dramatically affects protein structure refinement.
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20239-44. doi: 10.1073/pnas.0810818105. Epub 2008 Dec 10.
7
Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics.
Structure. 2008 May;16(5):673-83. doi: 10.1016/j.str.2008.03.005.
8
Comparative protein structure modeling using Modeller.
Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit-5.6. doi: 10.1002/0471250953.bi0506s15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验