Suppr超能文献

通过高尔基定位的 G 蛋白βγ亚基调节从转高尔基网络到质膜的组成性货物运输。

Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits.

机构信息

Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.

出版信息

J Biol Chem. 2010 Oct 15;285(42):32393-404. doi: 10.1074/jbc.M110.154963. Epub 2010 Aug 18.

Abstract

Observations of Golgi fragmentation upon introduction of G protein βγ (Gβγ) subunits into cells have implicated Gβγ in a pathway controlling the fission at the trans-Golgi network (TGN) of plasma membrane (PM)-destined transport carriers. However, the subcellular location where Gβγ acts to provoke Golgi fragmentation is not known. Additionally, a role for Gβγ in regulating TGN-to-PM transport has not been demonstrated. Here we report that constitutive or inducible targeting of Gβγ to the Golgi, but not other subcellular locations, causes phospholipase C- and protein kinase D-dependent vesiculation of the Golgi in HeLa cells; Golgi-targeted β(1)γ(2) also activates protein kinase D. Moreover, the novel Gβγ inhibitor, gallein, and the Gβγ-sequestering protein, GRK2ct, reveal that Gβγ is required for the constitutive PM transport of two model cargo proteins, VSV-G and ss-HRP. Importantly, Golgi-targeted GRK2ct, but not a PM-targeted GRK2ct, also blocks protein transport to the PM. To further support a role for Golgi-localized Gβγ, endogenous Gβ was detected at the Golgi in HeLa cells. These results are the first to establish a role for Golgi-localized Gβγ in regulating protein transport from the TGN to the cell surface.

摘要

当将 G 蛋白 βγ(Gβγ)亚基引入细胞时,观察到高尔基体的碎片化,这表明 Gβγ 参与了控制质膜(PM)定向运输载体在高尔基体内网络(TGN)分裂的途径。然而,Gβγ 发挥作用以引发高尔基体碎片化的亚细胞位置尚不清楚。此外,Gβγ 在调节 TGN 到 PM 运输中的作用尚未得到证明。在这里,我们报告说,组成型或诱导型将 Gβγ 靶向高尔基体,但不是其他亚细胞位置,会导致 HeLa 细胞中高尔基体内的磷脂酶 C 和蛋白激酶 D 依赖性囊泡形成;靶向高尔基体的 β(1)γ(2) 还会激活蛋白激酶 D。此外,新型 Gβγ 抑制剂 gallein 和 Gβγ 隔离蛋白 GRK2ct 表明,Gβγ 是两种模型 cargo 蛋白(VSV-G 和 ss-HRP)的组成型 PM 运输所必需的。重要的是,靶向高尔基体的 GRK2ct,但不是靶向质膜的 GRK2ct,也会阻止蛋白质向质膜的运输。为了进一步支持高尔基体定位的 Gβγ 的作用,在 HeLa 细胞中检测到内源性 Gβ 在高尔基体上。这些结果首次确立了高尔基体定位的 Gβγ 在调节 TGN 到细胞表面的蛋白质运输中的作用。

相似文献

2
Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi.
J Biol Chem. 2017 Feb 3;292(5):1773-1784. doi: 10.1074/jbc.M116.750430. Epub 2016 Dec 19.
4
PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway.
Cell Signal. 2015 Dec;27(12):2444-51. doi: 10.1016/j.cellsig.2015.08.017. Epub 2015 Aug 29.
5
Gβγ regulates mitotic Golgi fragmentation and G2/M cell cycle progression.
Mol Biol Cell. 2021 Oct 1;32(20):br2. doi: 10.1091/mbc.E21-04-0175. Epub 2021 Jul 14.
7
Regulation of PKD1-mediated Golgi to cell surface trafficking by Gαq subunits.
Biol Cell. 2014 Jan;106(1):30-43. doi: 10.1111/boc.201300052. Epub 2013 Dec 12.
8
Gγ identity dictates efficacy of Gβγ signaling and macrophage migration.
J Biol Chem. 2018 Feb 23;293(8):2974-2989. doi: 10.1074/jbc.RA117.000872. Epub 2018 Jan 9.
9
G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction.
Cell Signal. 2006 Oct;18(10):1758-68. doi: 10.1016/j.cellsig.2006.01.016. Epub 2006 Mar 6.
10
Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets.
Trends Pharmacol Sci. 2023 Feb;44(2):98-111. doi: 10.1016/j.tips.2022.11.003. Epub 2022 Dec 7.

引用本文的文献

2
Arabidopsis AGB1 participates in salinity response through bZIP17-mediated unfolded protein response.
BMC Plant Biol. 2024 Jun 21;24(1):586. doi: 10.1186/s12870-024-05296-x.
3
Optical control of cell-surface and endomembrane-exclusive β-adrenergic receptor signaling.
J Biol Chem. 2024 Jul;300(7):107481. doi: 10.1016/j.jbc.2024.107481. Epub 2024 Jun 18.
4
Optical Control of Cell-Surface and Endomembrane-Exclusive β-Adrenergic Receptor Signaling.
bioRxiv. 2024 Feb 15:2024.02.14.580335. doi: 10.1101/2024.02.14.580335.
5
Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk.
Cell Rep. 2024 Jan 23;43(1):113595. doi: 10.1016/j.celrep.2023.113595. Epub 2023 Dec 19.
6
Gβγ signaling regulates microtubule-dependent control of Golgi integrity.
Cell Signal. 2023 Jun;106:110630. doi: 10.1016/j.cellsig.2023.110630. Epub 2023 Feb 16.
7
Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets.
Trends Pharmacol Sci. 2023 Feb;44(2):98-111. doi: 10.1016/j.tips.2022.11.003. Epub 2022 Dec 7.
8
The olfactory receptor OR51E2 activates ERK1/2 through the Golgi-localized Gβγ-PI3Kγ-ARF1 pathway in prostate cancer cells.
Front Pharmacol. 2022 Oct 13;13:1009380. doi: 10.3389/fphar.2022.1009380. eCollection 2022.
9
Endomembrane-Based Signaling by GPCRs and G-Proteins.
Cells. 2022 Feb 3;11(3):528. doi: 10.3390/cells11030528.
10
Constitutive activation of S1P receptors at the -Golgi network is required for surface transport carrier formation.
iScience. 2021 Oct 29;24(11):103351. doi: 10.1016/j.isci.2021.103351. eCollection 2021 Nov 19.

本文引用的文献

1
Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11417-22. doi: 10.1073/pnas.1003042107. Epub 2010 Jun 7.
2
Protein kinase D controls the integrity of Golgi apparatus and the maintenance of dendritic arborization in hippocampal neurons.
Mol Biol Cell. 2009 Apr;20(7):2108-20. doi: 10.1091/mbc.e08-09-0957. Epub 2009 Feb 11.
3
Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis.
Cell. 2009 Jan 23;136(2):235-48. doi: 10.1016/j.cell.2008.11.018. Epub 2009 Jan 8.
4
The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes.
Annu Rev Pharmacol Toxicol. 2009;49:31-56. doi: 10.1146/annurev-pharmtox-061008-103038.
5
Protein kinase d regulates trafficking of dendritic membrane proteins in developing neurons.
J Neurosci. 2008 Sep 10;28(37):9297-308. doi: 10.1523/JNEUROSCI.1879-08.2008.
8
Protein kinase D is a key regulator of cardiomyocyte lipoprotein lipase secretion after diabetes.
Circ Res. 2008 Aug 1;103(3):252-60. doi: 10.1161/CIRCRESAHA.108.178681. Epub 2008 Jun 26.
9
G protein βγ subunits: central mediators of G protein-coupled receptor signaling.
Cell Mol Life Sci. 2008 Jul;65(14):2191-214. doi: 10.1007/s00018-008-8006-5.
10
G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm?
J Recept Signal Transduct Res. 2008;28(1-2):15-28. doi: 10.1080/10799890801941889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验