Plasma Nanoscience Centre Australia, CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070, Australia.
Nanoscale. 2010 Oct;2(10):2012-27. doi: 10.1039/c0nr00366b. Epub 2010 Aug 18.
This feature article introduces a deterministic approach for the rapid, single-step, direct synthesis of metal oxide nanowires. This approach is based on the exposure of thin metal samples to reactive oxygen plasmas and does not require any intervening processing or external substrate heating. The critical roles of the reactive oxygen plasmas, surface processes, and plasma-surface interactions that enable this growth are critically examined by using a deterministic viewpoint. The essentials of the experimental procedures and reactor design are presented and related to the key process requirements. The nucleation and growth kinetics is discussed for typical solid-liquid-solid and vapor-solid-solid mechanisms related to the synthesis of the oxide nanowires of metals with low (Ga, Cd) and high (Fe) melting points, respectively. Numerical simulations are focused on the possibility to predict the nanowire nucleation points through the interaction of the plasma radicals and ions with the nanoscale morphological features on the surface, as well as to control the localized 'hot spots' that in turn determine the nanowire size and shape. This generic approach can be applied to virtually any oxide nanoscale system and further confirms the applicability of the plasma nanoscience approaches for deterministic nanoscale synthesis and processing.
这篇专题文章介绍了一种确定性方法,用于快速、单步、直接合成金属氧化物纳米线。这种方法基于将薄金属样品暴露在反应性氧等离子体中,不需要任何中间处理或外部基底加热。使用确定性观点仔细检查了使这种生长成为可能的反应性氧等离子体、表面过程和等离子体-表面相互作用的关键作用。介绍了实验程序和反应器设计的要点,并将其与关键工艺要求相关联。讨论了与分别合成低(Ga、Cd)和高(Fe)熔点金属的氧化物纳米线相关的典型固-液-固和汽-固-固机制的成核和生长动力学。数值模拟集中于通过等离子体自由基和离子与表面纳米尺度形貌特征的相互作用来预测纳米线成核点的可能性,以及控制决定纳米线尺寸和形状的局部“热点”的可能性。这种通用方法几乎可以应用于任何氧化物纳米尺度系统,并进一步证实了等离子体纳米科学方法在确定性纳米尺度合成和处理中的适用性。