Suppr超能文献

通过等离子体辅助和石墨烯功能化的SnO纳米花核壳组装实现出色的室温氢气检测

Outstanding Room-Temperature Hydrogen Gas Detection by Plasma-Assisted and Graphene-Functionalized Core-Shell Assembly of SnO Nanoburflower.

作者信息

Nandi Anupam, Nag Pratanu, Panda Dipankar, Dhar Sukanta, Hossain Syed Minhaz, Saha Hiranmay, Majumdar Sanhita

机构信息

Centre of Excellence for Green Energy and Sensor Systems (CEGESS) and Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), P.O. Botanic Garden, Shibpur, Howrah 711103, West Bengal, India.

Department of Physics, Jadavpur University, Kolkata 700032, West Bengal, India.

出版信息

ACS Omega. 2019 Jun 25;4(6):11053-11065. doi: 10.1021/acsomega.9b01372. eCollection 2019 Jun 30.

Abstract

Here, we have reported the synthesis of three-dimensional, mesoporous, nano-SnO cores encapsulated in nonstoichiometric SnO shells grown by chemical as well as physical synthesis procedures such as plasma-enhanced chemical vapor deposition, followed by functionalization with reduced graphene oxide (rGO) on the surface. The main motif to fabricate such morphology, i.e., core-shell assembly of burflower-like SnO nanobid is to distinguish gases quantitatively at reduced operating temperatures. Electrochemical results reveal that rGO anchored on SnO surface offers excellent gas detection performances at room temperature. It exhibits outstanding H selectivity through a wide range, from ∼10 ppm to 1 vol %, with very little cross-sensitivity against other similar types of reducing gases. Good recovery as well as prompt responses also added flair in its quality due to the highly mesoporous architecture. Without using any expensive dopant/catalyst/filler or any special class of surfactants, these unique SnO mesoporous nanostructures have exhibited exceptional gas sensing performances at room temperature and are thus helpful to fabricate sensing devices in most cost-effective and eco-friendly manner.

摘要

在此,我们报道了通过化学以及物理合成方法(如等离子体增强化学气相沉积)生长的,封装在非化学计量比SnO壳中的三维介孔纳米SnO核的合成,随后在其表面用还原氧化石墨烯(rGO)进行功能化。制造这种形态(即花椰菜状SnO纳米棒的核壳组装)的主要目的是在降低的操作温度下对气体进行定量区分。电化学结果表明,锚定在SnO表面的rGO在室温下具有出色的气体检测性能。它在从约10 ppm到1 vol%的宽范围内表现出出色的H选择性,对其他类似类型的还原性气体的交叉敏感性非常小。由于高度介孔结构,良好的恢复以及快速响应也为其质量增添了亮点。无需使用任何昂贵的掺杂剂/催化剂/填料或任何特殊类别的表面活性剂,这些独特的SnO介孔纳米结构在室温下表现出优异的气敏性能,因此有助于以最具成本效益和生态友好的方式制造传感装置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea31/6648368/75eeec54dcf4/ao-2019-01372a_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验