Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
Neuron. 2010 Aug 26;67(4):562-74. doi: 10.1016/j.neuron.2010.08.001.
To understand fine-scale structure and function of single mammalian neuronal networks, we developed and validated a strategy to genetically target and trace monosynaptic inputs to a single neuron in vitro and in vivo. The strategy independently targets a neuron and its presynaptic network for specific gene expression and fine-scale labeling, using single-cell electroporation of DNA to target infection and monosynaptic retrograde spread of a genetically modifiable rabies virus. The technique is highly reliable, with transsynaptic labeling occurring in every electroporated neuron infected by the virus. Targeting single neocortical neuronal networks in vivo, we found clusters of both spiny and aspiny neurons surrounding the electroporated neuron in each case, in addition to intricately labeled distal cortical and subcortical inputs. This technique, broadly applicable for probing and manipulating single neuronal networks with single-cell resolution in vivo, may help shed new light on fundamental mechanisms underlying circuit development and information processing by neuronal networks throughout the brain.
为了理解单个哺乳动物神经元网络的精细结构和功能,我们开发并验证了一种策略,可用于在体外和体内对单个神经元进行遗传靶向和追踪单突触输入。该策略使用单细胞电穿孔 DNA 来靶向感染和遗传修饰的狂犬病病毒的单突触逆行传播,从而独立地对神经元及其突触前网络进行特定基因表达和精细标记。该技术非常可靠,转导突触标记发生在每个被病毒感染的电穿孔神经元中。在体内靶向单个新皮层神经元网络,我们发现每个被电穿孔的神经元周围都有棘突和无棘突神经元簇,此外还有错综复杂的标记的远端皮质和皮质下输入。这种技术广泛适用于以单细胞分辨率在体内探测和操纵单个神经元网络,可能有助于揭示大脑中神经元网络的回路发育和信息处理的基本机制。