Suppr超能文献

映射 S21 微孔形成途径。

Mapping the pinhole formation pathway of S21.

机构信息

Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, TX 77843-2128, USA.

出版信息

Mol Microbiol. 2010 Nov;78(3):710-9. doi: 10.1111/j.1365-2958.2010.07362.x. Epub 2010 Sep 14.

Abstract

Phage holins are small, lethal membrane proteins of two general types: canonical holins, like λ S105, which oligomerizes and forms large membrane holes of unprecedented size; and pinholins, like S(21) 68 of lambdoid phage 21, which forms homo-heptameric channels, or pinholes, with a lumen of <2 nm. Pinholes depolarize the membrane, leading to activation of secreted endolysins and murein degradation. S(21) 68 has two transmembrane domains, TMD1 and TMD2. TMD2 alone lines the pinhole, making heterotypic interactions involving two surfaces, A and B. Mutational analysis on S(21) 68 suggested that S(21) 68 initially forms inactive dimer, with TMD1 inhibiting TMD2 both in cis and trans. When TMD1 exits the membrane to the periplasm, it liberates TMD2 to participate in the pathway to pinhole formation. In this study, further mutational analysis suggests a refined pinhole formation pathway, with the existence of at least two intermediate states. We propose that the pathway begins in the activated dimer state, with a homotypic TMD2 interface involving the A surface. Evidence is presented for a further oligomeric state involving a heterotypic A:B interaction. Moreover, the data suggest that a glycine-zipper motif present in the A interface of TMD2 is involved in every stage downstream of the inactive dimer.

摘要

噬菌体 holin 是两种通用类型的小而致命的膜蛋白:典型的 holin,如 λ S105,其寡聚化并形成前所未有的大膜孔;和 pinholin,如 λ 噬菌体 21 的 S(21) 68,其形成同型七聚体通道,或小孔,其腔小于 2nm。小孔使膜去极化,导致分泌内溶素的激活和肽聚糖的降解。S(21) 68 有两个跨膜结构域,TMD1 和 TMD2。TMD2 单独构成小孔,形成涉及两个表面 A 和 B 的异型相互作用。对 S(21) 68 的突变分析表明,S(21) 68 最初形成无活性的二聚体,TMD1 在顺式和反式都抑制 TMD2。当 TMD1 离开膜进入周质时,它释放 TMD2 参与小孔形成途径。在这项研究中,进一步的突变分析表明存在一个细化的小孔形成途径,其中至少存在两个中间状态。我们提出该途径始于激活的二聚体状态,涉及 A 表面的同型 TMD2 界面。有证据表明存在涉及异型 A:B 相互作用的进一步聚合态。此外,数据表明 TMD2 的 A 界面中存在的甘氨酸拉链基序参与了无活性二聚体下游的每个阶段。

相似文献

1
Mapping the pinhole formation pathway of S21.
Mol Microbiol. 2010 Nov;78(3):710-9. doi: 10.1111/j.1365-2958.2010.07362.x. Epub 2010 Sep 14.
2
Structural and functional characterization of the pore-forming domain of pinholin S68.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29637-29646. doi: 10.1073/pnas.2007979117. Epub 2020 Nov 5.
3
Mutational analysis of the S21 pinholin.
Mol Microbiol. 2010 Apr;76(1):68-77. doi: 10.1111/j.1365-2958.2010.07080.x. Epub 2010 Feb 23.
4
Topological dynamics of holins in programmed bacterial lysis.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19713-8. doi: 10.1073/pnas.0600943103. Epub 2006 Dec 15.
5
Probing the structure of the S105 hole.
J Bacteriol. 2014 Nov;196(21):3683-9. doi: 10.1128/JB.01673-14. Epub 2014 Aug 4.
6
Structure of the lethal phage pinhole.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18966-71. doi: 10.1073/pnas.0907941106. Epub 2009 Oct 27.
7
Thermodynamic Details of Pinholin S68 Activation Revealed Using Alchemical Free Energy Simulations.
J Phys Chem B. 2024 Sep 12;128(36):8762-8770. doi: 10.1021/acs.jpcb.4c03302. Epub 2024 Aug 28.
9
The pinholin of lambdoid phage 21: control of lysis by membrane depolarization.
J Bacteriol. 2007 Dec;189(24):9135-9. doi: 10.1128/JB.00847-07. Epub 2007 Sep 7.
10
Visualization of pinholin lesions in vivo.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2054-63. doi: 10.1073/pnas.1222283110. Epub 2013 May 13.

引用本文的文献

1
Identifying components of the phage LambdaSo lysis system.
J Bacteriol. 2024 Jun 20;206(6):e0002224. doi: 10.1128/jb.00022-24. Epub 2024 May 21.
2
Acinetobacter Baumannii Phages: Past, Present and Future.
Viruses. 2023 Mar 3;15(3):673. doi: 10.3390/v15030673.
3
Length matters: Functional flip of the short TatA transmembrane helix.
Biophys J. 2023 Jun 6;122(11):2125-2146. doi: 10.1016/j.bpj.2022.12.016. Epub 2022 Dec 15.
5
Pinholin S mutations induce structural topology and conformational changes.
Biochim Biophys Acta Biomembr. 2021 Dec 1;1863(12):183771. doi: 10.1016/j.bbamem.2021.183771. Epub 2021 Sep 7.
6
Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S Using DEER Spectroscopy.
J Phys Chem B. 2020 Dec 17;124(50):11396-11405. doi: 10.1021/acs.jpcb.0c09081. Epub 2020 Dec 8.
7
Structural and functional characterization of the pore-forming domain of pinholin S68.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29637-29646. doi: 10.1073/pnas.2007979117. Epub 2020 Nov 5.
9
Active S68 and inactive SIRS pinholin interact differently with the lipid bilayer: A P and H solid state NMR study.
Biochim Biophys Acta Biomembr. 2020 Jul 1;1862(7):183257. doi: 10.1016/j.bbamem.2020.183257. Epub 2020 Mar 5.

本文引用的文献

1
Mutational analysis of the S21 pinholin.
Mol Microbiol. 2010 Apr;76(1):68-77. doi: 10.1111/j.1365-2958.2010.07080.x. Epub 2010 Feb 23.
2
Regulation of a muralytic enzyme by dynamic membrane topology.
Nat Struct Mol Biol. 2009 Nov;16(11):1192-4. doi: 10.1038/nsmb.1681. Epub 2009 Nov 1.
3
Structure of the lethal phage pinhole.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18966-71. doi: 10.1073/pnas.0907941106. Epub 2009 Oct 27.
4
Blue native PAGE.
Nat Protoc. 2006;1(1):418-28. doi: 10.1038/nprot.2006.62.
5
Topological dynamics of holins in programmed bacterial lysis.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19713-8. doi: 10.1073/pnas.0600943103. Epub 2006 Dec 15.
6
Transmembrane glycine zippers: physiological and pathological roles in membrane proteins.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14278-83. doi: 10.1073/pnas.0501234102. Epub 2005 Sep 22.
7
Periplasmic domains define holin-antiholin interactions in t4 lysis inhibition.
J Bacteriol. 2005 Oct;187(19):6631-40. doi: 10.1128/JB.187.19.6631-6640.2005.
8
Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme.
Science. 2005 Jan 7;307(5706):113-7. doi: 10.1126/science.1105143.
9
Sequence motifs, polar interactions and conformational changes in helical membrane proteins.
Curr Opin Struct Biol. 2003 Aug;13(4):412-7. doi: 10.1016/s0959-440x(03)00102-7.
10
Bacteriophage control of bacterial virulence.
Infect Immun. 2002 Aug;70(8):3985-93. doi: 10.1128/IAI.70.8.3985-3993.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验