Suppr超能文献

探究S105孔的结构。

Probing the structure of the S105 hole.

作者信息

To Kam H, Young Ry

机构信息

Center for Phage Technology, Department of Biochemistry and Biophysics, and Department of Biology, Texas A&M University, College Station, Texas, USA.

Center for Phage Technology, Department of Biochemistry and Biophysics, and Department of Biology, Texas A&M University, College Station, Texas, USA

出版信息

J Bacteriol. 2014 Nov;196(21):3683-9. doi: 10.1128/JB.01673-14. Epub 2014 Aug 4.

Abstract

For most phages, holins control the timing of host lysis. During the morphogenesis period of the infection cycle, canonical holins accumulate harmlessly in the cytoplasmic membrane until they suddenly trigger to form lethal lesions called holes. The holes can be visualized by cryo-electron microscopy and tomography as micrometer-scale interruptions in the membrane. To explore the fine structure of the holes formed by the lambda holin, S105, a cysteine-scanning accessibility study was performed. A collection of S105 alleles encoding holins with a single Cys residue in different positions was developed and characterized for lytic function. Based on the ability of 4-acetamido-4'-((iodoacetyl) amino) stilbene-2,2'-disulfonic acid, disodium salt (IASD), to modify these Cys residues, one face of transmembrane domain 1 (TMD1) and TMD3 was judged to face the lumen of the S105 hole. In both cases, the lumen-accessible face was found to correspond to the more hydrophilic face of the two TMDs. Judging by the efficiency of IASD modification, it was concluded that the bulk of the S105 protein molecules were involved in facing the lumen. These results are consistent with a model in which the perimeters of the S105 holes are lined by the holin molecules present at the time of lysis. Moreover, the findings that TMD1 and TMD3 face the lumen, coupled with previous results showing TMD2-TMD2 contacts in the S105 dimer, support a model in which membrane depolarization drives the transition of S105 from homotypic to heterotypic oligomeric interactions.

摘要

对于大多数噬菌体而言,穿孔素控制宿主裂解的时间。在感染周期的形态发生期,典型的穿孔素无害地积累在细胞质膜中,直到它们突然触发形成称为孔的致死性损伤。这些孔可以通过冷冻电子显微镜和断层扫描观察到,表现为膜上微米级的中断。为了探究λ噬菌体穿孔素S105形成的孔的精细结构,进行了一项半胱氨酸扫描可及性研究。构建了一系列编码在不同位置带有单个半胱氨酸残基的穿孔素的S105等位基因,并对其裂解功能进行了表征。基于4-乙酰氨基-4'-((碘乙酰基)氨基)芪-2,2'-二磺酸二钠盐(IASD)修饰这些半胱氨酸残基的能力,判断跨膜结构域1(TMD1)和TMD3的一个面朝向S105孔的内腔。在这两种情况下,发现可及内腔的面与两个TMD中更亲水的面相对应。根据IASD修饰的效率判断,得出结论:大部分S105蛋白分子参与面向内腔。这些结果与一个模型一致,即在裂解时存在的穿孔素分子排列在S105孔的周边。此外,TMD1和TMD3面向内腔的发现,再加上先前显示S105二聚体中TMD2-TMD2接触的结果,支持了一个模型,即膜去极化驱动S105从同型寡聚相互作用转变为异型寡聚相互作用。

相似文献

1
Probing the structure of the S105 hole.
J Bacteriol. 2014 Nov;196(21):3683-9. doi: 10.1128/JB.01673-14. Epub 2014 Aug 4.
2
Stable micron-scale holes are a general feature of canonical holins.
Mol Microbiol. 2014 Jan;91(1):57-65. doi: 10.1111/mmi.12439. Epub 2013 Nov 21.
3
Micron-scale holes terminate the phage infection cycle.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2219-23. doi: 10.1073/pnas.0914030107. Epub 2010 Jan 11.
4
Computational Simulation of Holin S105 in Membrane Bilayer and Its Dimerization Through a Helix-Turn-Helix Motif.
J Membr Biol. 2021 Aug;254(4):397-407. doi: 10.1007/s00232-021-00187-w. Epub 2021 Jun 29.
5
Genetic dissection of T4 lysis.
J Bacteriol. 2014 Jun;196(12):2201-9. doi: 10.1128/JB.01548-14. Epub 2014 Apr 4.
6
Holin triggering in real time.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):798-803. doi: 10.1073/pnas.1011921108. Epub 2010 Dec 27.
7
Topological dynamics of holins in programmed bacterial lysis.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19713-8. doi: 10.1073/pnas.0600943103. Epub 2006 Dec 15.
8
Functional analysis of heterologous holin proteins in a lambdaDeltaS genetic background.
FEMS Microbiol Lett. 2000 Mar 15;184(2):179-86. doi: 10.1111/j.1574-6968.2000.tb09011.x.
9
The holin of bacteriophage lambda forms rings with large diameter.
Mol Microbiol. 2008 Aug;69(4):784-793. doi: 10.1111/j.1365-2958.2008.06298.x.
10
The N-terminal transmembrane domain of lambda S is required for holin but not antiholin function.
J Bacteriol. 2010 Feb;192(3):725-33. doi: 10.1128/JB.01263-09. Epub 2009 Nov 6.

引用本文的文献

1
Microscopic origin of the spatial and temporal precision in biological systems.
Biophys Rep (N Y). 2025 Mar 12;5(1):100197. doi: 10.1016/j.bpr.2025.100197. Epub 2025 Jan 28.
2
Molecular mechanisms of precise timing in cell lysis.
Biophys J. 2024 Sep 17;123(18):3090-3099. doi: 10.1016/j.bpj.2024.07.008. Epub 2024 Jul 6.
4
Spatial and temporal control of lysis by the lambda holin.
mBio. 2024 Feb 14;15(2):e0129023. doi: 10.1128/mbio.01290-23. Epub 2023 Dec 21.
5
Topological examination of the bacteriophage lambda S holin by EPR spectroscopy.
Biochim Biophys Acta Biomembr. 2023 Feb;1865(2):184083. doi: 10.1016/j.bbamem.2022.184083. Epub 2022 Nov 9.
6
Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications.
Front Microbiol. 2022 Oct 26;13:1044143. doi: 10.3389/fmicb.2022.1044143. eCollection 2022.
7
Functional Analysis of the Endopeptidase and Holin From Cyanophage PaV-LD.
Front Microbiol. 2022 Apr 28;13:849492. doi: 10.3389/fmicb.2022.849492. eCollection 2022.
9
Pinholin S mutations induce structural topology and conformational changes.
Biochim Biophys Acta Biomembr. 2021 Dec 1;1863(12):183771. doi: 10.1016/j.bbamem.2021.183771. Epub 2021 Sep 7.
10
Computational Simulation of Holin S105 in Membrane Bilayer and Its Dimerization Through a Helix-Turn-Helix Motif.
J Membr Biol. 2021 Aug;254(4):397-407. doi: 10.1007/s00232-021-00187-w. Epub 2021 Jun 29.

本文引用的文献

1
Stable micron-scale holes are a general feature of canonical holins.
Mol Microbiol. 2014 Jan;91(1):57-65. doi: 10.1111/mmi.12439. Epub 2013 Nov 21.
2
Phage lysis: do we have the hole story yet?
Curr Opin Microbiol. 2013 Dec;16(6):790-7. doi: 10.1016/j.mib.2013.08.008. Epub 2013 Oct 8.
3
Visualization of pinholin lesions in vivo.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2054-63. doi: 10.1073/pnas.1222283110. Epub 2013 May 13.
4
Functional analysis of a class I holin, P2 Y.
J Bacteriol. 2013 Mar;195(6):1346-55. doi: 10.1128/JB.01986-12. Epub 2013 Jan 18.
5
Holin triggering in real time.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):798-803. doi: 10.1073/pnas.1011921108. Epub 2010 Dec 27.
6
Mutational analysis of the S21 pinholin.
Mol Microbiol. 2010 Apr;76(1):68-77. doi: 10.1111/j.1365-2958.2010.07080.x. Epub 2010 Feb 23.
7
Micron-scale holes terminate the phage infection cycle.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2219-23. doi: 10.1073/pnas.0914030107. Epub 2010 Jan 11.
8
Structure of the lethal phage pinhole.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18966-71. doi: 10.1073/pnas.0907941106. Epub 2009 Oct 27.
9
The T4 RI antiholin has an N-terminal signal anchor release domain that targets it for degradation by DegP.
J Bacteriol. 2007 Nov;189(21):7618-25. doi: 10.1128/JB.00854-07. Epub 2007 Aug 10.
10
Bacteriophage-encoded toxins: the lambda-holin protein causes caspase-independent non-apoptotic cell death of eukaryotic cells.
Cell Microbiol. 2007 Jul;9(7):1753-65. doi: 10.1111/j.1462-5822.2007.00911.x. Epub 2007 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验