Suppr超能文献

通过计算机模拟对跨膜螺旋 WALP23 的取向的 2H-NMR 实验进行解释。

Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations.

机构信息

INSERM UMR-S 665, DSIMB, Paris, France.

出版信息

Biophys J. 2010 Sep 8;99(5):1455-64. doi: 10.1016/j.bpj.2010.05.039.

Abstract

Orientation, dynamics, and packing of transmembrane helical peptides are important determinants of membrane protein structure, dynamics, and function. Because it is difficult to investigate these aspects by studying real membrane proteins, model transmembrane helical peptides are widely used. NMR experiments provide information on both orientation and dynamics of peptides, but they require that motional models be interpreted. Different motional models yield different interpretations of quadrupolar splittings (QS) in terms of helix orientation and dynamics. Here, we use coarse-grained (CG) molecular dynamics (MD) simulations to investigate the behavior of a well-known model transmembrane peptide, WALP23, under different hydrophobic matching/mismatching conditions. We compare experimental (2)H-NMR QS (directly measured in experiments), as well as helix tilt angle and azimuthal rotation (not directly measured), with CG MD simulation results. For QS, the agreement is significantly better than previously obtained with atomistic simulations, indicating that equilibrium sampling is more important than atomistic details for reproducing experimental QS. Calculations of helix orientation confirm that the interpretation of QS depends on the motional model used. Our simulations suggest that WALP23 can form dimers, which are more stable in an antiparallel arrangement. The origin of the preference for the antiparallel orientation lies not only in electrostatic interactions but also in better surface complementarity. In most cases, a mixture of monomers and antiparallel dimers provides better agreement with NMR data compared to the monomer and the parallel dimer. CG MD simulations allow predictions of helix orientation and dynamics and interpretation of QS data without requiring any assumption about the motional model.

摘要

跨膜螺旋肽的取向、动力学和堆积是膜蛋白结构、动力学和功能的重要决定因素。由于难以通过研究真实的膜蛋白来研究这些方面,因此广泛使用模型跨膜螺旋肽。NMR 实验提供了关于肽的取向和动力学的信息,但它们需要解释运动模型。不同的运动模型根据螺旋取向和动力学对四极分裂(QS)给出不同的解释。在这里,我们使用粗粒(CG)分子动力学(MD)模拟来研究一种众所周知的模型跨膜肽 WALP23 在不同疏水性匹配/不匹配条件下的行为。我们将实验(2)H-NMR QS(直接在实验中测量)以及螺旋倾斜角和方位旋转(未直接测量)与 CG MD 模拟结果进行比较。对于 QS,与以前的原子模拟相比,一致性要好得多,这表明平衡采样对于重现实验 QS 比原子细节更为重要。螺旋取向的计算证实,QS 的解释取决于所使用的运动模型。我们的模拟表明,WALP23 可以形成二聚体,其在反平行排列中更稳定。反平行取向的偏好不仅源于静电相互作用,还源于更好的表面互补性。在大多数情况下,与单体和平行二聚体相比,单体和反平行二聚体的混合物与 NMR 数据的一致性更好。CG MD 模拟允许在不假设运动模型的情况下预测螺旋取向和动力学,并解释 QS 数据。

相似文献

2
Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers.
Chem Phys Lipids. 2013 Apr;169:95-105. doi: 10.1016/j.chemphyslip.2013.02.001. Epub 2013 Feb 13.
3
Best of Two Worlds? How MD Simulations of Amphiphilic Helical Peptides in Membranes Can Complement Data from Oriented Solid-State NMR.
J Chem Theory Comput. 2018 Nov 13;14(11):6002-6014. doi: 10.1021/acs.jctc.8b00283. Epub 2018 Oct 5.
4
Tilt and rotation angles of a transmembrane model peptide as studied by fluorescence spectroscopy.
Biophys J. 2009 Oct 21;97(8):2258-66. doi: 10.1016/j.bpj.2009.07.042.
5
Orientation and dynamics of peptides in membranes calculated from 2H-NMR data.
Biophys J. 2009 Apr 22;96(8):3223-32. doi: 10.1016/j.bpj.2009.02.040.
6
Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
Acc Chem Res. 2010 Mar 16;43(3):388-96. doi: 10.1021/ar900211k.
7
Order parameters of a transmembrane helix in a fluid bilayer: case study of a WALP peptide.
Biophys J. 2010 May 19;98(9):1864-72. doi: 10.1016/j.bpj.2010.01.016.
8
On the orientation of a designed transmembrane peptide: toward the right tilt angle?
J Am Chem Soc. 2007 Dec 12;129(49):15174-81. doi: 10.1021/ja073784q. Epub 2007 Nov 15.
9
Coarse-grained molecular dynamics simulations of membrane proteins and peptides.
J Struct Biol. 2007 Mar;157(3):593-605. doi: 10.1016/j.jsb.2006.10.004. Epub 2006 Oct 20.

引用本文的文献

1
Unidirectional Transmembrane Photoinduced Electron Transfer with Artificial Metallopeptides.
Artif Photosynth. 2025 May 28;1(4):188-203. doi: 10.1021/aps.5c00010. eCollection 2025 Jul 24.
3
Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects.
Front Physiol. 2017 Mar 2;8:124. doi: 10.3389/fphys.2017.00124. eCollection 2017.
4
Thermodynamics of Micelle Formation and Membrane Fusion Modulate Antimicrobial Lipopeptide Activity.
Biophys J. 2015 Aug 18;109(4):750-9. doi: 10.1016/j.bpj.2015.07.011.
5
Membrane environment modulates the pKa values of transmembrane helices.
J Phys Chem B. 2015 Apr 2;119(13):4601-7. doi: 10.1021/acs.jpcb.5b00289. Epub 2015 Mar 22.
6
Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity.
Biophys J. 2014 Oct 21;107(8):1862-1872. doi: 10.1016/j.bpj.2014.08.026.
7
Enhanced Sampling of Coarse-Grained Transmembrane-Peptide Structure Formation from Hydrogen-Bond Replica Exchange.
J Membr Biol. 2015 Jun;248(3):395-405. doi: 10.1007/s00232-014-9738-9. Epub 2014 Oct 14.
9
The Transmembrane Helix Tilt May Be Determined by the Balance between Precession Entropy and Lipid Perturbation.
J Chem Theory Comput. 2012 Aug 14;8(8):2896-2904. doi: 10.1021/ct300128x. Epub 2012 Jun 6.

本文引用的文献

1
The MARTINI Coarse-Grained Force Field: Extension to Proteins.
J Chem Theory Comput. 2008 May;4(5):819-34. doi: 10.1021/ct700324x.
2
Order parameters of a transmembrane helix in a fluid bilayer: case study of a WALP peptide.
Biophys J. 2010 May 19;98(9):1864-72. doi: 10.1016/j.bpj.2010.01.016.
3
Orientation and dynamics of transmembrane peptides: the power of simple models.
Eur Biophys J. 2010 Mar;39(4):609-21. doi: 10.1007/s00249-009-0567-1. Epub 2009 Dec 18.
5
Tilt and rotation angles of a transmembrane model peptide as studied by fluorescence spectroscopy.
Biophys J. 2009 Oct 21;97(8):2258-66. doi: 10.1016/j.bpj.2009.07.042.
6
Aggregation of transmembrane peptides studied by spin-label EPR.
J Phys Chem B. 2009 Sep 10;113(36):12257-64. doi: 10.1021/jp901371h.
9
Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane proteins: a theoretical analysis.
Biophys J. 2009 Apr 22;96(8):3233-41. doi: 10.1016/j.bpj.2008.12.3950.
10
Orientation and dynamics of peptides in membranes calculated from 2H-NMR data.
Biophys J. 2009 Apr 22;96(8):3223-32. doi: 10.1016/j.bpj.2009.02.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验