Suppr超能文献

古菌中多样化的细胞分裂和囊泡形成系统的演化。

Evolution of diverse cell division and vesicle formation systems in Archaea.

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.

出版信息

Nat Rev Microbiol. 2010 Oct;8(10):731-41. doi: 10.1038/nrmicro2406. Epub 2010 Sep 6.

Abstract

Recently a novel cell division system comprised of homologues of eukaryotic ESCRT-III (endosomal sorting complex required for transport III) proteins was discovered in the hyperthermophilic crenarchaeote Sulfolobus acidocaldarius. On the basis of this discovery, we undertook a comparative genomic analysis of the machineries for cell division and vesicle formation in Archaea. Archaea possess at least three distinct membrane remodelling systems: the FtsZ-based bacterial-type system, the ESCRT-III-based eukaryote-like system and a putative novel system that uses an archaeal actin-related protein. Many archaeal genomes encode assortments of components from different systems. Evolutionary reconstruction from these findings suggests that the last common ancestor of the extant Archaea possessed a complex membrane remodelling apparatus, different components of which were lost during subsequent evolution of archaeal lineages. By contrast, eukaryotes seem to have inherited all three ancestral systems.

摘要

最近,在嗜热古菌 Sulfolobus acidocaldarius 中发现了一种新型的细胞分裂系统,该系统由真核 ESCRT-III(内体运输所需的分选复合物 III)蛋白的同源物组成。基于这一发现,我们对古菌中细胞分裂和囊泡形成的机制进行了比较基因组分析。古菌至少拥有三种不同的膜重塑系统:基于 FtsZ 的细菌型系统、基于 ESCRT-III 的真核样系统和一种可能的新型系统,该系统使用古菌肌动蛋白相关蛋白。许多古菌基因组编码来自不同系统的成分组合。从这些发现进行的进化重建表明,现存古菌的最后共同祖先拥有一个复杂的膜重塑装置,其不同成分在古菌谱系的后续进化过程中丢失了。相比之下,真核生物似乎继承了所有三个祖先系统。

相似文献

1
Evolution of diverse cell division and vesicle formation systems in Archaea.
Nat Rev Microbiol. 2010 Oct;8(10):731-41. doi: 10.1038/nrmicro2406. Epub 2010 Sep 6.
2
Coevolution of Eukaryote-like Vps4 and ESCRT-III Subunits in the Asgard Archaea.
mBio. 2020 May 19;11(3):e00417-20. doi: 10.1128/mBio.00417-20.
3
A unique cell division machinery in the Archaea.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18942-6. doi: 10.1073/pnas.0809467105. Epub 2008 Nov 5.
4
A relay race of ESCRT-III paralogs drives cell division in a hyperthermophilic archaeon.
mBio. 2025 Feb 5;16(2):e0099124. doi: 10.1128/mbio.00991-24. Epub 2024 Dec 19.
5
Diversity, origin, and evolution of the ESCRT systems.
mBio. 2024 Mar 13;15(3):e0033524. doi: 10.1128/mbio.00335-24. Epub 2024 Feb 21.
6
Asgard archaea illuminate the origin of eukaryotic cellular complexity.
Nature. 2017 Jan 19;541(7637):353-358. doi: 10.1038/nature21031. Epub 2017 Jan 11.
7
Tracing back variations in archaeal ESCRT-based cell division to protein domain architectures.
PLoS One. 2022 Mar 31;17(3):e0266395. doi: 10.1371/journal.pone.0266395. eCollection 2022.
8
The Structure, Function and Roles of the Archaeal ESCRT Apparatus.
Subcell Biochem. 2017;84:357-377. doi: 10.1007/978-3-319-53047-5_12.
9
10
Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery.
Nat Commun. 2022 Jun 13;13(1):3398. doi: 10.1038/s41467-022-30656-2.

引用本文的文献

2
A relay race of ESCRT-III paralogs drives cell division in a hyperthermophilic archaeon.
mBio. 2025 Feb 5;16(2):e0099124. doi: 10.1128/mbio.00991-24. Epub 2024 Dec 19.
3
Diversity, Origin and Evolution of the ESCRT Systems.
bioRxiv. 2024 Feb 7:2024.02.06.579148. doi: 10.1101/2024.02.06.579148.
4
The Archaeal Cell Cycle.
Annu Rev Cell Dev Biol. 2024 Oct;40(1):1-23. doi: 10.1146/annurev-cellbio-111822-120242. Epub 2024 Sep 21.
5
Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division.
Nat Microbiol. 2024 Mar;9(3):698-711. doi: 10.1038/s41564-024-01600-5. Epub 2024 Mar 4.
6
Widespread photosynthesis reaction centre barrel proteins are necessary for haloarchaeal cell division.
Nat Microbiol. 2024 Mar;9(3):712-726. doi: 10.1038/s41564-024-01615-y. Epub 2024 Mar 4.
7
Extracellular vesicle formation in is driven by a small GTPase.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2311321121. doi: 10.1073/pnas.2311321121. Epub 2024 Feb 26.
8
Diversity, origin, and evolution of the ESCRT systems.
mBio. 2024 Mar 13;15(3):e0033524. doi: 10.1128/mbio.00335-24. Epub 2024 Feb 21.
9
Identification of structural and regulatory cell-shape determinants in Haloferax volcanii.
Nat Commun. 2024 Feb 15;15(1):1414. doi: 10.1038/s41467-024-45196-0.
10
Roles of ESCRT-III polymers in cell division across the tree of life.
Curr Opin Cell Biol. 2023 Dec;85:102274. doi: 10.1016/j.ceb.2023.102274. Epub 2023 Nov 8.

本文引用的文献

3
Molecular mechanism of multivesicular body biogenesis by ESCRT complexes.
Nature. 2010 Apr 8;464(7290):864-9. doi: 10.1038/nature08849. Epub 2010 Mar 21.
4
Comparative and functional analysis of the archaeal cell cycle.
Cell Cycle. 2010 Feb 15;9(4):794-806. Epub 2010 Feb 17.
5
Assembly of the AAA ATPase Vps4 on ESCRT-III.
Mol Biol Cell. 2010 Mar 15;21(6):1059-71. doi: 10.1091/mbc.e09-07-0572. Epub 2010 Jan 28.
7
Developmental and cellular functions of the ESCRT machinery in pluricellular organisms.
Biol Cell. 2010 Jan 13;102(3):191-202. doi: 10.1042/BC20090145.
8
Actin, a central player in cell shape and movement.
Science. 2009 Nov 27;326(5957):1208-12. doi: 10.1126/science.1175862.
9
Sculpting the bacterial cell.
Curr Biol. 2009 Sep 15;19(17):R812-22. doi: 10.1016/j.cub.2009.06.033.
10
A single-base resolution map of an archaeal transcriptome.
Genome Res. 2010 Jan;20(1):133-41. doi: 10.1101/gr.100396.109. Epub 2009 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验