Suppr超能文献

合成致死化合物组合揭示了金黄色葡萄球菌中壁磷壁酸和肽聚糖生物合成之间的基本联系。

Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus.

机构信息

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.

出版信息

ACS Chem Biol. 2011 Jan 21;6(1):106-16. doi: 10.1021/cb100269f. Epub 2010 Nov 4.

Abstract

Methicillin resistance in Staphylococcus aureus depends on the production of mecA, which encodes penicillin-binding protein 2A (PBP2A), an acquired peptidoglycan transpeptidase (TP) with reduced susceptibility to β-lactam antibiotics. PBP2A cross-links nascent peptidoglycan when the native TPs are inhibited by β-lactams. Although mecA expression is essential for β-lactam resistance, it is not sufficient. Here we show that blocking the expression of wall teichoic acids (WTAs) by inhibiting the first enzyme in the pathway, TarO, sensitizes methicillin-resistant S. aureus (MRSA) strains to β-lactams even though the β-lactam-resistant transpeptidase, PBP2A, is still expressed. The dramatic synergy between TarO inhibitors and β-lactams is noteworthy not simply because strategies to overcome MRSA are desperately needed but because neither TarO nor the activities of the native TPs are essential in MRSA strains. The "synthetic lethality" of inhibiting TarO and the native TPs suggests a functional connection between ongoing WTA expression and peptidoglycan assembly in S. aureus. Indeed, transmission electron microscopy shows that S. aureus cells blocked in WTA synthesis have extensive defects in septation and cell separation, indicating dysregulated cell wall assembly and degradation. Our studies imply that WTAs play a fundamental role in S. aureus cell division and raise the possibility that synthetic lethal compound combinations may have therapeutic utility for overcoming antibiotic-resistant bacterial infections.

摘要

耐甲氧西林金黄色葡萄球菌(MRSA)的耐药性取决于 mecA 的产生,mecA 编码青霉素结合蛋白 2A(PBP2A),这是一种获得性的肽聚糖转肽酶(TP),对β-内酰胺类抗生素的敏感性降低。当天然 TP 被β-内酰胺类抗生素抑制时,PBP2A 交联新生的肽聚糖。虽然 mecA 的表达对于β-内酰胺类抗生素的耐药性是必需的,但它是不够的。在这里,我们表明通过抑制途径中的第一个酶 TarO 来阻断壁磷壁酸(WTAs)的表达,即使仍然表达β-内酰胺类耐药的转肽酶 PBP2A,也能使耐甲氧西林金黄色葡萄球菌(MRSA)菌株对β-内酰胺类抗生素敏感。TarO 抑制剂和β-内酰胺类抗生素之间的显著协同作用不仅值得注意,因为急需克服 MRSA 的策略,而且因为 TarO 及其天然 TP 的活性在 MRSA 菌株中都不是必需的。抑制 TarO 和天然 TP 的“合成致死性”表明在金黄色葡萄球菌中,WTAs 的持续表达与肽聚糖组装之间存在功能联系。事实上,透射电子显微镜显示,在 WTA 合成中受阻的金黄色葡萄球菌细胞在隔膜和细胞分离方面存在广泛缺陷,表明细胞壁组装和降解失调。我们的研究表明,WTAs 在金黄色葡萄球菌细胞分裂中起着重要作用,并提出了合成致死性化合物组合可能具有治疗耐药性细菌感染的可能性。

相似文献

3
Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams.
ACS Chem Biol. 2013 Jan 18;8(1):226-33. doi: 10.1021/cb300413m. Epub 2012 Oct 19.
4
The Novel Membrane-Associated Auxiliary Factors AuxA and AuxB Modulate β-lactam Resistance in MRSA by stabilizing Lipoteichoic Acids.
Int J Antimicrob Agents. 2021 Mar;57(3):106283. doi: 10.1016/j.ijantimicag.2021.106283. Epub 2021 Jan 24.
6
Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division.
mBio. 2022 Aug 30;13(4):e0066922. doi: 10.1128/mbio.00669-22. Epub 2022 Jun 15.
10
Two codependent routes lead to high-level MRSA.
Science. 2024 Nov;386(6721):573-580. doi: 10.1126/science.adn1369. Epub 2024 Oct 31.

引用本文的文献

2
SpbR controls lipoteichoic acid length by directly inhibiting signal peptidase SpsB in .
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2426464122. doi: 10.1073/pnas.2426464122. Epub 2025 Jun 30.
4
Wall teichoic acids regulate peptidoglycan synthesis by paving cell wall nanostructure.
bioRxiv. 2025 May 12:2024.09.02.610702. doi: 10.1101/2024.09.02.610702.
6
Genome-wide analysis of fitness determinants of Staphylococcus aureus during growth in milk.
PLoS Pathog. 2025 Apr 9;21(4):e1013080. doi: 10.1371/journal.ppat.1013080. eCollection 2025 Apr.
8
Mechanistic insights into the multitarget synergistic efficacy of farrerol and β-lactam antibiotics in combating methicillin-resistant .
Antimicrob Agents Chemother. 2025 Apr 2;69(4):e0155124. doi: 10.1128/aac.01551-24. Epub 2025 Feb 28.
9
Berberine inhibits the tarO gene to impact MRSA cell wall synthesis.
Sci Rep. 2025 Feb 26;15(1):6927. doi: 10.1038/s41598-025-91724-3.
10
Bicarbonate Within: A Hidden Modulator of Antibiotic Susceptibility.
Antibiotics (Basel). 2025 Jan 16;14(1):96. doi: 10.3390/antibiotics14010096.

本文引用的文献

1
Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Nat Commun. 2010 Jun 15;1:26. doi: 10.1038/ncomms1025.
2
Optimal drug synergy in antimicrobial treatments.
PLoS Comput Biol. 2010 Jun 3;6(6):e1000796. doi: 10.1371/journal.pcbi.1000796.
4
cwrA, a gene that specifically responds to cell wall damage in Staphylococcus aureus.
Microbiology (Reading). 2010 May;156(Pt 5):1372-1383. doi: 10.1099/mic.0.036129-0. Epub 2010 Feb 18.
5
Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl.
Mol Microbiol. 2010 Feb;75(4):864-73. doi: 10.1111/j.1365-2958.2009.07007.x. Epub 2010 Jan 25.
6
An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway.
Int J Med Microbiol. 2010 Feb;300(2-3):161-9. doi: 10.1016/j.ijmm.2009.10.005. Epub 2009 Dec 14.
7
Wall teichoic acid function, biosynthesis, and inhibition.
Chembiochem. 2010 Jan 4;11(1):35-45. doi: 10.1002/cbic.200900557.
8
The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus.
Int J Med Microbiol. 2010 Feb;300(2-3):148-54. doi: 10.1016/j.ijmm.2009.10.001. Epub 2009 Nov 6.
9
Exploiting synthetic lethal interactions for targeted cancer therapy.
Cell Cycle. 2009 Oct 1;8(19):3112-9. doi: 10.4161/cc.8.19.9626.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验