Suppr超能文献

钠通道的开放和失活快速内态:一种作用于位点 3 的海葵毒素的差异效应。

Open- and closed-state fast inactivation in sodium channels: differential effects of a site-3 anemone toxin.

机构信息

Department of Biological Sciences, Idaho State University, Pocatello, USA.

出版信息

Channels (Austin). 2011 Jan-Feb;5(1):65-78. doi: 10.4161/chan.5.1.14031. Epub 2011 Jan 1.

Abstract

The role of sodium channel closed-state fast inactivation in membrane excitability is not well understood. We compared open- and closed-state fast inactivation, and the gating charge immobilized during these transitions, in skeletal muscle channel hNa(V)1.4. A significant fraction of total charge movement and its immobilization occurred in the absence of channel opening. Simulated action potentials in skeletal muscle fibers were attenuated when pre-conditioned by sub-threshold depolarization. Anthopleurin A, a site-3 toxin that inhibits gating charge associated with the movement of DIVS4, was used to assess the role of this voltage sensor in closed-state fast inactivation. Anthopleurin elicited opposing effects on the gating mode, kinetics and charge immobilized during open- versus closed-state fast inactivation. This same toxin produced identical effects on recovery of channel availability and remobilization of gating charge, irrespective of route of entry into fast inactivation. Our findings suggest that depolarization promoting entry into fast inactivation from open versus closed states provides access to the IFMT receptor via different rate-limiting conformational translocations of DIVS4.

摘要

钠通道关闭状态快速失活在膜兴奋性中的作用尚不清楚。我们比较了骨骼肌通道 hNa(V)1.4 的开放和关闭状态快速失活,以及在这些转变过程中固定的门控电荷。在没有通道打开的情况下,总电荷移动的很大一部分及其固定发生。当用亚阈值去极化进行预处理时,骨骼肌纤维中的模拟动作电位会减弱。Anthopleurin A 是一种位点 3 毒素,可抑制与 DIVS4 运动相关的门控电荷,用于评估该电压传感器在关闭状态快速失活中的作用。Anthopleurin A 对开放与关闭状态快速失活过程中的门控模式、动力学和固定电荷产生相反的影响。这种相同的毒素对通道可用性的恢复和门控电荷的再动员产生相同的影响,而与进入快速失活的途径无关。我们的研究结果表明,从开放状态到关闭状态促进快速失活进入的去极化通过 DIVS4 的不同限速构象转变为 IFMT 受体提供了通道。

相似文献

1
Open- and closed-state fast inactivation in sodium channels: differential effects of a site-3 anemone toxin.
Channels (Austin). 2011 Jan-Feb;5(1):65-78. doi: 10.4161/chan.5.1.14031. Epub 2011 Jan 1.
2
beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel.
J Gen Physiol. 2007 Sep;130(3):257-68. doi: 10.1085/jgp.200609719. Epub 2007 Aug 13.
4
A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons.
Neurotoxicology. 2011 Jun;32(3):320-30. doi: 10.1016/j.neuro.2011.02.007. Epub 2011 Mar 4.
5
Site-3 toxins and cardiac sodium channels.
Toxicon. 2007 Feb;49(2):181-93. doi: 10.1016/j.toxicon.2006.09.017. Epub 2006 Sep 27.
6
Differential effects of paramyotonia congenita mutations F1473S and F1705I on sodium channel gating.
Channels (Austin). 2008 Jan-Feb;2(1):39-50. doi: 10.4161/chan.2.1.6051. Epub 2008 Apr 7.
9
Central charged residues in DIIIS4 regulate deactivation gating in skeletal muscle sodium channels.
Cell Mol Neurobiol. 2007 Feb;27(1):87-106. doi: 10.1007/s10571-006-9120-2. Epub 2006 Dec 7.

引用本文的文献

1
In vitro inhibition of voltage-dependent sodium currents by the antifungal drug amorolfine.
J Biol Chem. 2025 Apr;301(4):108407. doi: 10.1016/j.jbc.2025.108407. Epub 2025 Mar 14.
3
Synergistic Effect of Brevetoxin BTX-3 and Ciguatoxin CTX3C in Human Voltage-Gated Na1.6 Sodium Channels.
Chem Res Toxicol. 2023 Dec 18;36(12):1990-2000. doi: 10.1021/acs.chemrestox.3c00267. Epub 2023 Nov 15.
5
Conformations of voltage-sensing domain III differentially define NaV channel closed- and open-state inactivation.
J Gen Physiol. 2021 Sep 6;153(9). doi: 10.1085/jgp.202112891. Epub 2021 Aug 4.
6
Na and K channels: history and structure.
Biophys J. 2021 Mar 2;120(5):756-763. doi: 10.1016/j.bpj.2021.01.013. Epub 2021 Jan 21.
7
Uncoupling sodium channel dimers restores the phenotype of a pain-linked Na 1.7 channel mutation.
Br J Pharmacol. 2020 Oct;177(19):4481-4496. doi: 10.1111/bph.15196. Epub 2020 Aug 24.
8
Kilohertz waveforms optimized to produce closed-state Na+ channel inactivation eliminate onset response in nerve conduction block.
PLoS Comput Biol. 2020 Jun 15;16(6):e1007766. doi: 10.1371/journal.pcbi.1007766. eCollection 2020 Jun.
9
New Insights into the Type II Toxins from the Sea Anemone .
Toxins (Basel). 2020 Jan 10;12(1):44. doi: 10.3390/toxins12010044.

本文引用的文献

1
Differential effects of paramyotonia congenita mutations F1473S and F1705I on sodium channel gating.
Channels (Austin). 2008 Jan-Feb;2(1):39-50. doi: 10.4161/chan.2.1.6051. Epub 2008 Apr 7.
3
beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel.
J Gen Physiol. 2007 Sep;130(3):257-68. doi: 10.1085/jgp.200609719. Epub 2007 Aug 13.
4
Charge immobilization of skeletal muscle Na+ channels: role of residues in the inactivation linker.
Biophys J. 2007 Sep 1;93(5):1519-33. doi: 10.1529/biophysj.106.102079. Epub 2007 May 18.
5
Voltage-gated ion channels and gating modifier toxins.
Toxicon. 2007 Feb;49(2):124-41. doi: 10.1016/j.toxicon.2006.09.022. Epub 2006 Sep 28.
6
A cation-pi interaction discriminates among sodium channels that are either sensitive or resistant to tetrodotoxin block.
J Biol Chem. 2007 Mar 16;282(11):8044-51. doi: 10.1074/jbc.M611334200. Epub 2007 Jan 19.
7
Central charged residues in DIIIS4 regulate deactivation gating in skeletal muscle sodium channels.
Cell Mol Neurobiol. 2007 Feb;27(1):87-106. doi: 10.1007/s10571-006-9120-2. Epub 2006 Dec 7.
8
Na channel inactivation from open and closed states.
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17991-6. doi: 10.1073/pnas.0607603103. Epub 2006 Nov 13.
9
Site-3 toxins and cardiac sodium channels.
Toxicon. 2007 Feb;49(2):181-93. doi: 10.1016/j.toxicon.2006.09.017. Epub 2006 Sep 27.
10
Pathomechanisms in channelopathies of skeletal muscle and brain.
Annu Rev Neurosci. 2006;29:387-415. doi: 10.1146/annurev.neuro.29.051605.112815.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验