Suppr超能文献

LpxC的物种特异性和抑制剂依赖性构象:对抗生素设计的启示。

Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design.

作者信息

Lee Chul-Jin, Liang Xiaofei, Chen Xin, Zeng Daina, Joo Sang Hoon, Chung Hak Suk, Barb Adam W, Swanson Shauna M, Nicholas Robert A, Li Yaoxian, Toone Eric J, Raetz Christian R H, Zhou Pei

机构信息

Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Chem Biol. 2011 Jan 28;18(1):38-47. doi: 10.1016/j.chembiol.2010.11.011. Epub 2010 Dec 16.

Abstract

LpxC is an essential enzyme in the lipid A biosynthetic pathway in gram-negative bacteria. Several promising antimicrobial lead compounds targeting LpxC have been reported, though they typically display a large variation in potency against different gram-negative pathogens. We report that inhibitors with a diacetylene scaffold effectively overcome the resistance caused by sequence variation in the LpxC substrate-binding passage. Compound binding is captured in complex with representative LpxC orthologs, and structural analysis reveals large conformational differences that mostly reflect inherent molecular features of distinct LpxC orthologs, whereas ligand-induced structural adaptations occur at a smaller scale. These observations highlight the need for a molecular understanding of inherent structural features and conformational plasticity of LpxC enzymes for optimizing LpxC inhibitors as broad-spectrum antibiotics against gram-negative infections.

摘要

LpxC是革兰氏阴性菌脂质A生物合成途径中的一种必需酶。尽管针对LpxC的几种有前景的抗菌先导化合物对不同革兰氏阴性病原体的效力通常有很大差异,但已有相关报道。我们报告称,具有二乙炔支架的抑制剂能有效克服LpxC底物结合通道序列变异导致的耐药性。化合物结合通过与代表性的LpxC直系同源物形成复合物得以捕获,结构分析揭示了较大的构象差异,这些差异大多反映了不同LpxC直系同源物固有的分子特征,而配体诱导的结构适应性变化规模较小。这些观察结果凸显了从分子层面了解LpxC酶的固有结构特征和构象可塑性对于优化LpxC抑制剂作为抗革兰氏阴性感染的广谱抗生素的必要性。

相似文献

1
Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design.
Chem Biol. 2011 Jan 28;18(1):38-47. doi: 10.1016/j.chembiol.2010.11.011. Epub 2010 Dec 16.
2
Structure- and Ligand-Dynamics-Based Design of Novel Antibiotics Targeting Lipid A Enzymes LpxC and LpxH in Gram-Negative Bacteria.
Acc Chem Res. 2021 Apr 6;54(7):1623-1634. doi: 10.1021/acs.accounts.0c00880. Epub 2021 Mar 15.
3
Structure of the LpxC deacetylase with a bound substrate-analog inhibitor.
Nat Struct Biol. 2003 Aug;10(8):645-51. doi: 10.1038/nsb948.
4
Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18433-8. doi: 10.1073/pnas.0709412104. Epub 2007 Nov 19.
7
Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold.
Bioorg Med Chem. 2011 Jan 15;19(2):852-60. doi: 10.1016/j.bmc.2010.12.017. Epub 2010 Dec 9.
8
Structural basis of the promiscuous inhibitor susceptibility of Escherichia coli LpxC.
ACS Chem Biol. 2014 Jan 17;9(1):237-46. doi: 10.1021/cb400067g. Epub 2013 Oct 31.

引用本文的文献

1
Synthesis and Evaluation of 3‑Deoxy‑d--oct-2-ulosonic Acid Derivatives to Perturb Escherichia coli Lipopolysaccharide Biosynthesis.
JACS Au. 2025 May 22;5(6):2749-2761. doi: 10.1021/jacsau.5c00338. eCollection 2025 Jun 23.
2
Development of Fragment-Based Inhibitors of the Bacterial Deacetylase LpxC with Low Nanomolar Activity.
J Med Chem. 2024 Oct 10;67(19):17363-17391. doi: 10.1021/acs.jmedchem.4c01262. Epub 2024 Sep 20.
3
Fingolimod synergizes and reverses resistance to colistin.
Front Microbiol. 2024 May 30;15:1396663. doi: 10.3389/fmicb.2024.1396663. eCollection 2024.
5
Preclinical safety and efficacy characterization of an LpxC inhibitor against Gram-negative pathogens.
Sci Transl Med. 2023 Aug 9;15(708):eadf5668. doi: 10.1126/scitranslmed.adf5668.
6
Structure-Kinetic Relationship Studies for the Development of Long Residence Time LpxC Inhibitors.
J Med Chem. 2022 Sep 8;65(17):11854-11875. doi: 10.1021/acs.jmedchem.2c00974. Epub 2022 Aug 29.
8
Structure- and Ligand-Dynamics-Based Design of Novel Antibiotics Targeting Lipid A Enzymes LpxC and LpxH in Gram-Negative Bacteria.
Acc Chem Res. 2021 Apr 6;54(7):1623-1634. doi: 10.1021/acs.accounts.0c00880. Epub 2021 Mar 15.
9
Structural basis of the UDP-diacylglucosamine pyrophosphohydrolase LpxH inhibition by sulfonyl piperazine antibiotics.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4109-4116. doi: 10.1073/pnas.1912876117. Epub 2020 Feb 10.
10
Network-Based Metabolism-Centered Screening of Potential Drug Targets in at Genome Scale.
Front Cell Infect Microbiol. 2020 Jan 14;9:447. doi: 10.3389/fcimb.2019.00447. eCollection 2019.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
4
Automated structure solution with the PHENIX suite.
Methods Mol Biol. 2008;426:419-35. doi: 10.1007/978-1-60327-058-8_28.
5
Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis.
Curr Pharm Biotechnol. 2008 Feb;9(1):9-15. doi: 10.2174/138920108783497668.
7
Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18433-8. doi: 10.1073/pnas.0709412104. Epub 2007 Nov 19.
8
Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13543-50. doi: 10.1073/pnas.0705833104. Epub 2007 Aug 13.
9
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83. doi: 10.1093/nar/gkm216. Epub 2007 Apr 22.
10
Lipid A modification systems in gram-negative bacteria.
Annu Rev Biochem. 2007;76:295-329. doi: 10.1146/annurev.biochem.76.010307.145803.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验