Suppr超能文献

基于结构和配体动力学的靶向革兰氏阴性菌脂质 A 酶 LpxC 和 LpxH 的新型抗生素设计。

Structure- and Ligand-Dynamics-Based Design of Novel Antibiotics Targeting Lipid A Enzymes LpxC and LpxH in Gram-Negative Bacteria.

机构信息

Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States.

Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.

出版信息

Acc Chem Res. 2021 Apr 6;54(7):1623-1634. doi: 10.1021/acs.accounts.0c00880. Epub 2021 Mar 15.

Abstract

Bacterial infections caused by multi-drug-resistant Gram-negative pathogens pose a serious threat to public health. Gram-negative bacteria are characterized by the enrichment of lipid A-anchored lipopolysaccharide (LPS) or lipooligosaccharide (LOS) in the outer leaflet of their outer membrane. Constitutive biosynthesis of lipid A via the Raetz pathway is essential for bacterial viability and fitness in the human host. The inhibition of early-stage lipid A enzymes such as LpxC not only suppresses the growth of , , Enterobacter spp., and other clinically important Gram-negative pathogens but also sensitizes these bacteria to other antibiotics. The inhibition of late-stage lipid A enzymes such as LpxH is uniquely advantageous because it has an extra mechanism of bacterial killing through the accumulation of toxic lipid A intermediates, rendering LpxH inhibition additionally lethal to . Because essential enzymes of the Raetz pathway have never been exploited by commercial antibiotics, they are excellent targets for the development of novel antibiotics against multi-drug-resistant Gram-negative infections.This Account describes the ongoing research on characterizing the structure and inhibition of LpxC and LpxH, the second and fourth enzymes of the Raetz pathway of lipid A biosynthesis, in the laboratories of Dr. Pei Zhou and Dr. Jiyong Hong at Duke University. Our studies have elucidated the molecular basis of LpxC inhibition by the first broad-spectrum inhibitor, CHIR-090, as well as the mechanism underlying its spectrum of activity. Such an analysis has provided a molecular explanation for the broad-spectrum antibiotic activity of diacetylene-based LpxC inhibitors. Through the structural and biochemical investigation of LpxC inhibition by diacetylene LpxC inhibitors and the first nanomolar LpxC inhibitor, L-161,240, we have elucidated the intrinsic conformational and dynamics difference in individual LpxC enzymes near the active site. A similar approach has been taken to investigate LpxH inhibition, leading to the establishment of the pharmacophore model of LpxH inhibitors and subsequent structural elucidation of LpxH in complex with its first reported small-molecule inhibitor based on a sulfonyl piperazine scaffold.Intriguingly, although our crystallographic analysis of LpxC- and LpxH-inhibitor complexes detected only a single inhibitor conformation in the crystal lattice, solution NMR studies revealed the existence of multiple ligand conformations that together delineate a cryptic ligand envelope expanding the ligand-binding footprint beyond that observed in the crystal structure. By harnessing the ligand dynamics information and structural insights, we demonstrate the feasibility to design potent LpxC and LpxH inhibitors by merging multiple ligand conformations. Such an approach has enabled us to rationally design compounds with significantly enhanced potency in enzymatic assays and outstanding antibiotic activities and in animal models of bacterial infection. We anticipate that continued efforts with structure and ligand dynamics-based lead optimization will ultimately lead to the discovery of LpxC- and LpxH-targeting clinical antibiotics against a broad range of Gram-negative pathogens.

摘要

由多药耐药革兰氏阴性病原体引起的细菌感染对公共健康构成严重威胁。革兰氏阴性细菌的特征是在外膜的外叶层中富含脂质 A 锚定的脂多糖(LPS)或脂寡糖(LOS)。通过雷茨途径的组成型脂质 A 生物合成对于细菌在人体宿主中的生存能力和适应性至关重要。早期脂质 A 酶(如 LpxC)的抑制不仅抑制了 、 、肠杆菌属等临床重要革兰氏阴性病原体的生长,而且还使这些细菌对其他抗生素敏感。晚期脂质 A 酶(如 LpxH)的抑制具有独特的优势,因为它通过积累有毒的脂质 A 中间体来杀死细菌,使 LpxH 抑制对 更加致命。由于雷茨途径的必需酶从未被商业抗生素利用过,因此它们是开发针对多药耐药革兰氏阴性感染的新型抗生素的理想目标。本账户描述了在杜克大学 Pei Zhou 博士和 Jiyong Hong 博士实验室对脂质 A 生物合成的雷茨途径的第二和第四种酶 LpxC 和 LpxH 的结构和抑制作用的研究进展。我们的研究阐明了第一种广谱抑制剂 CHIR-090 对 LpxC 的抑制作用的分子基础,以及其活性谱的作用机制。这种分析为基于二乙炔的 LpxC 抑制剂的广谱抗生素活性提供了分子解释。通过对二乙炔 LpxC 抑制剂和第一个纳摩尔 LpxC 抑制剂对 LpxC 的抑制作用的结构和生化研究,我们阐明了活性位点附近单个 LpxC 酶的固有构象和动力学差异。类似的方法也被用于研究 LpxH 的抑制作用,从而建立了 LpxH 抑制剂的药效团模型,并随后根据基于磺酰基哌嗪骨架的第一个小分子抑制剂的结构阐明了 LpxH 的结构。有趣的是,尽管我们对 LpxC 和 LpxH-抑制剂复合物的晶体学分析在晶体晶格中仅检测到一种抑制剂构象,但溶液 NMR 研究揭示了多种配体构象的存在,这些构象共同描绘了一个隐藏的配体包络,将配体结合足迹扩展到晶体结构中观察到的范围之外。通过利用配体动力学信息和结构见解,我们证明了通过合并多种配体构象来设计有效 LpxC 和 LpxH 抑制剂的可行性。这种方法使我们能够设计出在酶测定和细菌感染动物模型中具有显著增强的效力和出色的抗生素活性的化合物。我们预计,通过结构和配体动力学为基础的先导化合物优化的持续努力最终将导致发现针对广泛革兰氏阴性病原体的靶向 LpxC 和 LpxH 的临床抗生素。

相似文献

1
Structure- and Ligand-Dynamics-Based Design of Novel Antibiotics Targeting Lipid A Enzymes LpxC and LpxH in Gram-Negative Bacteria.
Acc Chem Res. 2021 Apr 6;54(7):1623-1634. doi: 10.1021/acs.accounts.0c00880. Epub 2021 Mar 15.
2
Structural basis of the UDP-diacylglucosamine pyrophosphohydrolase LpxH inhibition by sulfonyl piperazine antibiotics.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4109-4116. doi: 10.1073/pnas.1912876117. Epub 2020 Feb 10.
3
Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design.
Chem Biol. 2011 Jan 28;18(1):38-47. doi: 10.1016/j.chembiol.2010.11.011. Epub 2010 Dec 16.
4
Structure-based discovery of LpxC inhibitors.
Bioorg Med Chem Lett. 2017 Apr 15;27(8):1670-1680. doi: 10.1016/j.bmcl.2017.03.006. Epub 2017 Mar 6.
8
Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli.
Biochemistry. 2007 Mar 27;46(12):3793-802. doi: 10.1021/bi6025165. Epub 2007 Mar 3.
9
Development of LpxH Inhibitors Chelating the Active Site Dimanganese Metal Cluster of LpxH.
ChemMedChem. 2023 Jun 1;18(11):e202300023. doi: 10.1002/cmdc.202300023. Epub 2023 Apr 17.
10
Structure-Activity Relationship of Sulfonyl Piperazine LpxH Inhibitors Analyzed by an LpxE-Coupled Malachite Green Assay.
ACS Infect Dis. 2019 Apr 12;5(4):641-651. doi: 10.1021/acsinfecdis.8b00364. Epub 2019 Feb 5.

引用本文的文献

1
Expanding automated multiconformer ligand modeling to macrocycles and fragments.
Elife. 2025 Jun 30;14:RP103797. doi: 10.7554/eLife.103797.
3
Novel Antibacterial Approaches and Therapeutic Strategies.
Antibiotics (Basel). 2025 Apr 15;14(4):404. doi: 10.3390/antibiotics14040404.
4
Antibacterial Effect and Mechanism of Chelerythrine on pv. .
Microorganisms. 2025 Apr 21;13(4):953. doi: 10.3390/microorganisms13040953.
5
Global health perspectives on antibacterial drug discovery and the preclinical pipeline.
Nat Rev Microbiol. 2025 Mar 27. doi: 10.1038/s41579-025-01167-w.
6
Evaluation of a potent LpxC inhibitor for post-exposure prophylaxis treatment of antibiotic-resistant in a murine infection model.
Antimicrob Agents Chemother. 2025 Jan 31;69(1):e0129524. doi: 10.1128/aac.01295-24. Epub 2024 Dec 13.
7
A Review of Antibacterial Candidates with New Modes of Action.
ACS Infect Dis. 2024 Oct 11;10(10):3440-3474. doi: 10.1021/acsinfecdis.4c00218. Epub 2024 Jul 17.
8
Antibiotic class with potent in vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2317274121. doi: 10.1073/pnas.2317274121. Epub 2024 Apr 5.

本文引用的文献

1
Lead optimization of 2-hydroxymethyl imidazoles as non-hydroxamate LpxC inhibitors: Discovery of TP0586532.
Bioorg Med Chem. 2021 Jan 15;30:115964. doi: 10.1016/j.bmc.2020.115964. Epub 2020 Dec 29.
2
Fragment-Based Discovery of Novel Non-Hydroxamate LpxC Inhibitors with Antibacterial Activity.
J Med Chem. 2020 Dec 10;63(23):14805-14820. doi: 10.1021/acs.jmedchem.0c01215. Epub 2020 Nov 19.
3
The Unrecognized Threat of Secondary Bacterial Infections with COVID-19.
mBio. 2020 Aug 7;11(4):e01806-20. doi: 10.1128/mBio.01806-20.
4
Synthesis and evaluation of sulfonyl piperazine LpxH inhibitors.
Bioorg Chem. 2020 Sep;102:104055. doi: 10.1016/j.bioorg.2020.104055. Epub 2020 Jun 30.
5
Two Distinct Mechanisms of Inhibition of LpxA Acyltransferase Essential for Lipopolysaccharide Biosynthesis.
J Am Chem Soc. 2020 Mar 4;142(9):4445-4455. doi: 10.1021/jacs.9b13530. Epub 2020 Feb 17.
6
Structural basis of the UDP-diacylglucosamine pyrophosphohydrolase LpxH inhibition by sulfonyl piperazine antibiotics.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4109-4116. doi: 10.1073/pnas.1912876117. Epub 2020 Feb 10.
9
Structural and Biological Basis of Small Molecule Inhibition of LpxD Acyltransferase Essential for Lipopolysaccharide Biosynthesis.
ACS Infect Dis. 2020 Jun 12;6(6):1480-1489. doi: 10.1021/acsinfecdis.9b00127. Epub 2019 Aug 22.
10
Optimization of LpxC Inhibitors for Antibacterial Activity and Cardiovascular Safety.
ChemMedChem. 2019 Aug 20;14(16):1560-1572. doi: 10.1002/cmdc.201900287. Epub 2019 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验