Suppr超能文献

用于诊断非线性混合效应模型的预测校正可视化预测检验。

Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models.

机构信息

Department of Pharmaceutical Biosciences, Uppsala University, Sweden.

出版信息

AAPS J. 2011 Jun;13(2):143-51. doi: 10.1208/s12248-011-9255-z. Epub 2011 Feb 8.

Abstract

Informative diagnostic tools are vital to the development of useful mixed-effects models. The Visual Predictive Check (VPC) is a popular tool for evaluating the performance of population PK and PKPD models. Ideally, a VPC will diagnose both the fixed and random effects in a mixed-effects model. In many cases, this can be done by comparing different percentiles of the observed data to percentiles of simulated data, generally grouped together within bins of an independent variable. However, the diagnostic value of a VPC can be hampered by binning across a large variability in dose and/or influential covariates. VPCs can also be misleading if applied to data following adaptive designs such as dose adjustments. The prediction-corrected VPC (pcVPC) offers a solution to these problems while retaining the visual interpretation of the traditional VPC. In a pcVPC, the variability coming from binning across independent variables is removed by normalizing the observed and simulated dependent variable based on the typical population prediction for the median independent variable in the bin. The principal benefit with the pcVPC has been explored by application to both simulated and real examples of PK and PKPD models. The investigated examples demonstrate that pcVPCs have an enhanced ability to diagnose model misspecification especially with respect to random effects models in a range of situations. The pcVPC was in contrast to traditional VPCs shown to be readily applicable to data from studies with a priori and/or a posteriori dose adaptations.

摘要

信息性诊断工具对于开发有用的混合效应模型至关重要。可视预测检查(VPC)是评估群体 PK 和 PKPD 模型性能的常用工具。理想情况下,VPC 将诊断混合效应模型中的固定效应和随机效应。在许多情况下,这可以通过将观察数据的不同分位数与模拟数据的分位数进行比较来实现,通常在自变量的箱内分组。然而,VPC 的诊断价值可能会受到剂量和/或有影响的协变量的大变异的箱分的阻碍。如果将 VPC 应用于自适应设计(例如剂量调整)后的数据,也可能会产生误导。预测校正 VPC(pcVPC)在保留传统 VPC 的视觉解释的同时,为这些问题提供了一种解决方案。在 pcVPC 中,通过根据箱中中位数自变量的典型人群预测,对观察到的和模拟的因变量进行归一化,消除了因自变量箱分引起的变异性。通过对 PK 和 PKPD 模型的模拟和真实示例的应用,已经探讨了 pcVPC 的主要优势。所研究的示例表明,pcVPC 具有增强的诊断模型指定错误的能力,尤其是在各种情况下的随机效应模型方面。与传统 VPC 相比,pcVPC 被证明易于应用于具有事先和/或事后剂量调整的研究的数据。

相似文献

1
Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models.
AAPS J. 2011 Jun;13(2):143-51. doi: 10.1208/s12248-011-9255-z. Epub 2011 Feb 8.
3
Standardized visual predictive check versus visual predictive check for model evaluation.
J Clin Pharmacol. 2012 Jan;52(1):39-54. doi: 10.1177/0091270010390040. Epub 2011 Jan 21.
4
A Regression Approach to Visual Predictive Checks for Population Pharmacometric Models.
CPT Pharmacometrics Syst Pharmacol. 2018 Oct;7(10):678-686. doi: 10.1002/psp4.12319. Epub 2018 Sep 10.
6
Visual Predictive Check in Models with Time-Varying Input Function.
AAPS J. 2015 Nov;17(6):1455-63. doi: 10.1208/s12248-015-9808-7. Epub 2015 Aug 12.
7
Development of visual predictive checks accounting for multimodal parameter distributions in mixture models.
J Pharmacokinet Pharmacodyn. 2019 Jun;46(3):241-250. doi: 10.1007/s10928-019-09632-9. Epub 2019 Apr 9.
8
Visual predictive check of longitudinal models and dropout.
J Pharmacokinet Pharmacodyn. 2024 Dec;51(6):859-875. doi: 10.1007/s10928-024-09937-4. Epub 2024 Aug 18.
9
Extensions to the visual predictive check to facilitate model performance evaluation.
J Pharmacokinet Pharmacodyn. 2008 Apr;35(2):185-202. doi: 10.1007/s10928-007-9081-1. Epub 2008 Jan 16.
10
PFIM 4.0, an extended R program for design evaluation and optimization in nonlinear mixed-effect models.
Comput Methods Programs Biomed. 2018 Mar;156:217-229. doi: 10.1016/j.cmpb.2018.01.008. Epub 2018 Jan 11.

引用本文的文献

6
Externally validated population pharmacokinetics of amikacin and evaluation of dosage regimen based on achieved serum concentrations in neonates.
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0081825. doi: 10.1128/aac.00818-25. Epub 2025 Jul 17.
7
Pirana and Integrated PMX Tools, a Workbench for NONMEM, NLME, pyDarwin, and RsNLME.
CPT Pharmacometrics Syst Pharmacol. 2025 Aug;14(8):1298-1309. doi: 10.1002/psp4.70067. Epub 2025 Jul 4.
9
Population pharmacokinetic analyses for telavancin using data from healthy subjects and patients with infections.
Antimicrob Agents Chemother. 2025 Jul 2;69(7):e0138224. doi: 10.1128/aac.01382-24. Epub 2025 Jun 12.

本文引用的文献

1
The future of drug development: advancing clinical trial design.
Nat Rev Drug Discov. 2009 Dec;8(12):949-57. doi: 10.1038/nrd3025. Epub 2009 Oct 9.
3
Handling data below the limit of quantification in mixed effect models.
AAPS J. 2009 Jun;11(2):371-80. doi: 10.1208/s12248-009-9112-5. Epub 2009 May 19.
4
Modeling and simulation of the time course of asenapine exposure response and dropout patterns in acute schizophrenia.
Clin Pharmacol Ther. 2009 Jul;86(1):84-91. doi: 10.1038/clpt.2009.44. Epub 2009 Apr 22.
5
Approaches to handling pharmacodynamic baseline responses.
J Pharmacokinet Pharmacodyn. 2008 Jun;35(3):269-83. doi: 10.1007/s10928-008-9088-2. Epub 2008 Apr 30.
6
Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R.
Comput Methods Programs Biomed. 2008 May;90(2):154-66. doi: 10.1016/j.cmpb.2007.12.002. Epub 2008 Jan 22.
7
Extensions to the visual predictive check to facilitate model performance evaluation.
J Pharmacokinet Pharmacodyn. 2008 Apr;35(2):185-202. doi: 10.1007/s10928-007-9081-1. Epub 2008 Jan 16.
8
Diagnosing model diagnostics.
Clin Pharmacol Ther. 2007 Jul;82(1):17-20. doi: 10.1038/sj.clpt.6100241.
9
PsN-Toolkit--a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM.
Comput Methods Programs Biomed. 2005 Sep;79(3):241-57. doi: 10.1016/j.cmpb.2005.04.005.
10
Perl-speaks-NONMEM (PsN)--a Perl module for NONMEM related programming.
Comput Methods Programs Biomed. 2004 Aug;75(2):85-94. doi: 10.1016/j.cmpb.2003.11.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验