Cambridge Crystallographic Data Centre, CB21EZ Cambridge, United Kingdom.
J Chem Inf Model. 2011 Apr 25;51(4):865-76. doi: 10.1021/ci100459b. Epub 2011 Mar 24.
The generation of molecular conformations and the evaluation of interaction potentials are common tasks in molecular modeling applications, particularly in protein-ligand or protein-protein docking programs. In this work, we present a GPU-accelerated approach capable of speeding up these tasks considerably. For the evaluation of interaction potentials in the context of rigid protein-protein docking, the GPU-accelerated approach reached speedup factors of up to over 50 compared to an optimized CPU-based implementation. Treating the ligand and donor groups in the protein binding site as flexible, speedup factors of up to 16 can be observed in the evaluation of protein-ligand interaction potentials. Additionally, we introduce a parallel version of our protein-ligand docking algorithm PLANTS that can take advantage of this GPU-accelerated scoring function evaluation. We compared the GPU-accelerated parallel version to the same algorithm running on the CPU and also to the highly optimized sequential CPU-based version. In terms of dependence of the ligand size and the number of rotatable bonds, speedup factors of up to 10 and 7, respectively, can be observed. Finally, a fitness landscape analysis in the context of rigid protein-protein docking was performed. Using a systematic grid-based search methodology, the GPU-accelerated version outperformed the CPU-based version with speedup factors of up to 60.
分子构象的生成和相互作用势的评估是分子建模应用中的常见任务,特别是在蛋白质配体或蛋白质-蛋白质对接程序中。在这项工作中,我们提出了一种 GPU 加速的方法,可以大大加快这些任务的速度。对于刚性蛋白质-蛋白质对接中相互作用势的评估,与优化的基于 CPU 的实现相比,GPU 加速的方法达到了高达 50 倍以上的加速倍数。对于蛋白质配体相互作用势的评估,将蛋白质结合位点中的配体和供体基团视为柔性的,可以观察到高达 16 的加速倍数。此外,我们引入了我们的蛋白质-配体对接算法 PLANTS 的并行版本,可以利用这种 GPU 加速的评分函数评估。我们将 GPU 加速的并行版本与在 CPU 上运行的相同算法以及高度优化的基于 CPU 的顺序版本进行了比较。在配体大小和可旋转键数量的依赖性方面,分别可以观察到高达 10 和 7 的加速倍数。最后,在刚性蛋白质-蛋白质对接的背景下进行了适应度景观分析。使用系统的基于网格的搜索方法,GPU 加速版本的加速倍数高达 60,优于基于 CPU 的版本。