Nobile Marco S, Cazzaniga Paolo, Tangherloni Andrea, Besozzi Daniela
Brief Bioinform. 2017 Sep 1;18(5):870-885. doi: 10.1093/bib/bbw058.
Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools.
生物信息学、计算生物学和系统生物学领域的多项研究依赖于对不同规模和复杂程度的生物系统的物理化学或数学模型的定义,范围从单个分子中原子的相互作用到全基因组相互作用网络。这些研究领域中开发的传统计算方法和软件工具具有一个共同特点:它们对中央处理器(CPU)的计算要求很高,因此在许多情况下限制了它们的适用性。为了克服这个问题,通用图形处理器(GPU)正越来越受到科学界的关注,因为它们可以显著减少基于标准CPU的软件所需的运行时间,并允许对生物系统进行更深入的研究。在这篇综述中,我们展示了最近开发的一系列用于生命科学学科进行计算分析的GPU工具,强调了使用这些并行架构的优点和缺点。此处综述的由GPU驱动的工具的完整列表可在http://bit.ly/gputools获取。