Suppr超能文献

千万原子级生物分子动力学模拟在千万亿次超级计算机上的扩展

Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.

作者信息

Schulz Roland, Lindner Benjamin, Petridis Loukas, Smith Jeremy C

机构信息

Center for Molecular Biophysics, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences 1414 Cumberland Avenue, Knoxville, Tennessee 37996, and BioEnergy Science Center, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831.

出版信息

J Chem Theory Comput. 2009 Oct 13;5(10):2798-808. doi: 10.1021/ct900292r.

Abstract

A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million-atom biological systems scale well up to ∼30k cores, producing ∼30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.

摘要

本文描述了一种在大规模并行超级计算机上对包含数百万个原子的生物系统进行快速全原子分子动力学模拟的策略。该策略是利用对生物能源研究特别感兴趣的基准系统开发的,这些系统包括纤维素和木质纤维素生物质在水溶液中的模型。该方法涉及使用反应场(RF)方法来计算长程静电相互作用,这允许在数千个核心上进行高效扩展。尽管RF方法在生物分子系统中的适用范围仍有待证明,但对于基准系统,使用RF产生的分子偶极矩、柯克伍德G因子、其他结构性质以及均方涨落与使用常用的粒子网格埃瓦尔德方法获得的结果非常吻合。使用RF,三百万和五百万原子的生物系统在高达约30k个核心上具有良好的扩展性,每天可产生约30纳秒的模拟时间。因此,对于时间尺度接近微秒的非常大的系统进行原子模拟现在似乎是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验