Suppr超能文献

不同皮质中枢对嗅觉信息的不同表现形式。

Distinct representations of olfactory information in different cortical centres.

机构信息

Department of Neuroscience and the Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.

出版信息

Nature. 2011 Apr 14;472(7342):213-6. doi: 10.1038/nature09868. Epub 2011 Mar 30.

Abstract

Sensory information is transmitted to the brain where it must be processed to translate stimulus features into appropriate behavioural output. In the olfactory system, distributed neural activity in the nose is converted into a segregated map in the olfactory bulb. Here we investigate how this ordered representation is transformed in higher olfactory centres in mice. We have developed a tracing strategy to define the neural circuits that convey information from individual glomeruli in the olfactory bulb to the piriform cortex and the cortical amygdala. The spatial order in the bulb is discarded in the piriform cortex; axons from individual glomeruli project diffusely to the piriform without apparent spatial preference. In the cortical amygdala, we observe broad patches of projections that are spatially stereotyped for individual glomeruli. These projections to the amygdala are overlapping and afford the opportunity for spatially localized integration of information from multiple glomeruli. The identification of a distributive pattern of projections to the piriform and stereotyped projections to the amygdala provides an anatomical context for the generation of learned and innate behaviours.

摘要

感觉信息被传送到大脑,在那里必须对其进行处理,将刺激特征转化为适当的行为输出。在嗅觉系统中,分布在鼻子中的神经活动被转化为嗅球中的分离图谱。在这里,我们研究了这种有序的表示在小鼠的更高嗅觉中心是如何转化的。我们开发了一种示踪策略来定义从嗅球中的单个嗅小球传递信息的神经回路到梨状皮层和皮质杏仁核。在梨状皮层中,小球中的空间顺序被丢弃;来自单个嗅小球的轴突弥散投射到梨状皮层,没有明显的空间偏好。在皮质杏仁核中,我们观察到广泛的投射斑块,这些斑块对于单个嗅小球具有空间定型。这些到杏仁核的投射是重叠的,并为来自多个嗅小球的信息的空间局部化整合提供了机会。向梨状皮层的弥散投射模式和向杏仁核的定型投射的识别为学习和先天行为的产生提供了一个解剖学背景。

相似文献

1
Distinct representations of olfactory information in different cortical centres.
Nature. 2011 Apr 14;472(7342):213-6. doi: 10.1038/nature09868. Epub 2011 Mar 30.
2
Cortical representations of olfactory input by trans-synaptic tracing.
Nature. 2011 Apr 14;472(7342):191-6. doi: 10.1038/nature09714. Epub 2010 Dec 22.
3
Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons.
Nature. 2011 Apr 14;472(7342):217-20. doi: 10.1038/nature09945. Epub 2011 Mar 30.
4
Olfactory neuroscience: beyond the bulb.
Curr Biol. 2011 Jun 7;21(11):R438-40. doi: 10.1016/j.cub.2011.04.036.
5
The participation of cortical amygdala in innate, odour-driven behaviour.
Nature. 2014 Nov 13;515(7526):269-73. doi: 10.1038/nature13897. Epub 2014 Nov 5.
6
Olfactory maps, circuits and computations.
Curr Opin Neurobiol. 2014 Feb;24(1):120-32. doi: 10.1016/j.conb.2013.09.010. Epub 2013 Oct 29.
7
Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio rerio).
J Comp Neurol. 2012 Aug 1;520(11):2317-39, Spc1. doi: 10.1002/cne.23075.
8
Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
J Neurosci. 2019 Dec 11;39(50):10002-10018. doi: 10.1523/JNEUROSCI.1234-19.2019. Epub 2019 Oct 31.
9
Representations of odor in the piriform cortex.
Neuron. 2009 Sep 24;63(6):854-64. doi: 10.1016/j.neuron.2009.09.005.
10
Diverse Representations of Olfactory Information in Centrifugal Feedback Projections.
J Neurosci. 2016 Jul 13;36(28):7535-45. doi: 10.1523/JNEUROSCI.3358-15.2016.

引用本文的文献

1
Anterior olfactory nucleus mediates parallel inter-bulbar pathways in rodents.
BMC Biol. 2025 Aug 29;23(1):271. doi: 10.1186/s12915-025-02353-1.
2
Wider Than the Sky: An Alternative to "Mapping" the World Onto the Brain.
Eur J Neurosci. 2025 Aug;62(4):e70224. doi: 10.1111/ejn.70224.
3
Decoding olfactory bulb output: A behavioral assessment of rate, synchrony, and respiratory phase coding.
iScience. 2025 May 26;28(7):112755. doi: 10.1016/j.isci.2025.112755. eCollection 2025 Jul 18.
4
Tackling aggression: Translating preclinical insights into clinical relevance.
Clin Transl Med. 2025 May;15(5):e70334. doi: 10.1002/ctm2.70334.
5
The AROMHA brain health test is a remote olfactory assessment to screen for cognitive impairment.
Sci Rep. 2025 Mar 24;15(1):9290. doi: 10.1038/s41598-025-92826-8.
6
Activity-dependent synaptic competition and dendrite pruning in developing mitral cells.
Front Neural Circuits. 2025 Jan 27;19:1541926. doi: 10.3389/fncir.2025.1541926. eCollection 2025.
7
A crucial role for the cortical amygdala in shaping social encounters.
Nature. 2025 Mar;639(8056):1006-1015. doi: 10.1038/s41586-024-08540-4. Epub 2025 Feb 12.
10
Olfactory deficits in aging and Alzheimer's-spotlight on inhibitory interneurons.
Front Neurosci. 2024 Dec 16;18:1503069. doi: 10.3389/fnins.2024.1503069. eCollection 2024.

本文引用的文献

1
Representations of odor in the piriform cortex.
Neuron. 2009 Sep 24;63(6):854-64. doi: 10.1016/j.neuron.2009.09.005.
2
Odor representations in olfactory cortex: "sparse" coding, global inhibition, and oscillations.
Neuron. 2009 Jun 25;62(6):850-61. doi: 10.1016/j.neuron.2009.05.022.
3
Molecular architecture of smell and taste in Drosophila.
Annu Rev Neurosci. 2007;30:505-33. doi: 10.1146/annurev.neuro.30.051606.094306.
4
Spatial and temporal distribution of odorant-evoked activity in the piriform cortex.
J Neurosci. 2007 Feb 14;27(7):1534-42. doi: 10.1523/JNEUROSCI.4072-06.2007.
5
Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages.
Gene. 2005 Feb 14;346:23-8. doi: 10.1016/j.gene.2004.09.027. Epub 2004 Dec 31.
6
Gene switching and the stability of odorant receptor gene choice.
Cell. 2004 Jun 11;117(6):801-15. doi: 10.1016/j.cell.2004.05.015.
9
Optical imaging of odorant representations in the mammalian olfactory bulb.
Neuron. 1999 Jul;23(3):499-511. doi: 10.1016/s0896-6273(00)80803-x.
10
Combinatorial receptor codes for odors.
Cell. 1999 Mar 5;96(5):713-23. doi: 10.1016/s0092-8674(00)80581-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验