Suppr超能文献

基质特性如何控制组织的自组装和维持。

How matrix properties control the self-assembly and maintenance of tissues.

机构信息

Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

Ann Biomed Eng. 2011 Jul;39(7):1849-56. doi: 10.1007/s10439-011-0310-9. Epub 2011 Apr 14.

Abstract

The mechanism by which cells organize into tissues is fundamental to developmental biology and tissue engineering. Likewise, the disruption of cellular order within tissues is a hallmark of many diseases including cancer and atherosclerosis. Tissue formation is regulated, in part, by a balance between cell-cell cohesion and cell-extracellular matrix (ECM) adhesion. Here, experiments and approaches to alter this balance are discussed, and the nature of this balance in the formation of microvasculature is explored. Using matrices of tailored stiffness and matrix presentation, the role of the mechanical properties and ligand density in angiogenesis has been investigated. Decreasing cell-matrix adhesion by either reducing matrix stiffness or matrix ligand density induces the self-assembly of endothelial cells into network-like structures. These structures are stabilized by the polymerization of the extracellular matrix protein fibronectin. When fibronectin polymerization is inhibited, network formation does not occur. Interestingly, this interplay between substrate mechanics, ECM assembly, and tissue self-assembly is not limited to endothelial cells and has been observed in other cell types as well. These results suggest novel approaches to foster stable cell-cell adhesion and engineer tissues.

摘要

细胞组织成组织的机制是发育生物学和组织工程学的基础。同样,组织内细胞秩序的破坏是许多疾病的标志,包括癌症和动脉粥样硬化。组织形成部分受到细胞-细胞黏附和细胞-细胞外基质 (ECM) 黏附之间平衡的调节。本文讨论了改变这种平衡的实验和方法,并探讨了这种平衡在微血管形成中的性质。通过改变基质的硬度和基质的呈现方式,研究了机械特性和配体密度在血管生成中的作用。通过降低基质硬度或基质配体密度减少细胞-基质黏附,诱导内皮细胞自组装成网络状结构。这些结构通过细胞外基质蛋白纤维连接蛋白的聚合来稳定。当纤维连接蛋白聚合被抑制时,网络形成不会发生。有趣的是,这种基质力学、ECM 组装和组织自组装之间的相互作用不仅限于内皮细胞,在其他细胞类型中也观察到了这种相互作用。这些结果为促进稳定的细胞-细胞黏附和工程组织提供了新的方法。

相似文献

1
How matrix properties control the self-assembly and maintenance of tissues.
Ann Biomed Eng. 2011 Jul;39(7):1849-56. doi: 10.1007/s10439-011-0310-9. Epub 2011 Apr 14.
2
Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly.
Acta Biomater. 2016 Mar 1;32:198-209. doi: 10.1016/j.actbio.2015.12.032. Epub 2015 Dec 19.
5
In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton.
Cardiovasc Res. 2001 Feb 16;49(3):647-58. doi: 10.1016/s0008-6363(00)00233-9.
6
Tie2 is tied at the cell-cell contacts and to extracellular matrix by angiopoietin-1.
Exp Mol Med. 2009 Mar 31;41(3):133-9. doi: 10.3858/emm.2009.41.3.016.
7
ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands.
Sci STKE. 2002 Feb 12;2002(119):pe7. doi: 10.1126/stke.2002.119.pe7.
8
Extracellular matrix presentation modulates vascular smooth muscle cell mechanotransduction.
Matrix Biol. 2015 Jan;41:36-43. doi: 10.1016/j.matbio.2014.11.001. Epub 2014 Nov 15.
9
Molecular properties of fibrin-based matrices for promotion of angiogenesis in vitro.
Microvasc Res. 2001 Nov;62(3):315-26. doi: 10.1006/mvre.2001.2348.
10
Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting.
Int Rev Cell Mol Biol. 2011;288:101-65. doi: 10.1016/B978-0-12-386041-5.00003-0.

引用本文的文献

2
Stiff Substrates Enhance Endothelial Oxidative Stress in Response to Protein Kinase C Activation.
Appl Bionics Biomech. 2019 Apr 14;2019:6578492. doi: 10.1155/2019/6578492. eCollection 2019.
3
Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications.
Biomaterials. 2018 Oct;179:109-121. doi: 10.1016/j.biomaterials.2018.06.038. Epub 2018 Jun 27.
6
Cell response of flexible PMMA-derivatives: supremacy of surface chemistry over substrate stiffness.
J Mater Sci Mater Med. 2017 Oct 12;28(11):183. doi: 10.1007/s10856-017-5994-4.
7
Fibroblast-fibronectin patterning and network formation in 3D fibrin matrices.
Matrix Biol. 2017 Dec;64:69-80. doi: 10.1016/j.matbio.2017.06.001. Epub 2017 Jun 7.
10
Mechanism of regulation of stem cell differentiation by matrix stiffness.
Stem Cell Res Ther. 2015 May 27;6(1):103. doi: 10.1186/s13287-015-0083-4.

本文引用的文献

1
Tissue engineering for clinical applications.
Biotechnol J. 2010 Dec;5(12):1309-23. doi: 10.1002/biot.201000230. Epub 2010 Nov 17.
2
Substrate Stiffness and Cell Area Predict Cellular Traction Stresses in Single Cells and Cells in Contact.
Cell Mol Bioeng. 2010 Mar 1;3(1):68-75. doi: 10.1007/s12195-010-0102-6.
3
Nanoscale surfacing for regenerative medicine.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Sep-Oct;2(5):478-95. doi: 10.1002/wnan.74.
4
Preparation of hydrogel substrates with tunable mechanical properties.
Curr Protoc Cell Biol. 2010 Jun;Chapter 10:Unit 10.16. doi: 10.1002/0471143030.cb1016s47.
5
Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors.
Semin Cancer Biol. 2010 Jun;20(3):139-45. doi: 10.1016/j.semcancer.2010.04.004. Epub 2010 May 7.
6
The effects of substrate elasticity on endothelial cell network formation and traction force generation.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3343-5. doi: 10.1109/IEMBS.2009.5333194.
7
Exogenous and endogenous force regulation of endothelial cell behavior.
J Biomech. 2010 Jan 5;43(1):79-86. doi: 10.1016/j.jbiomech.2009.09.012. Epub 2009 Oct 7.
8
The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells.
Cancer Res. 2009 May 15;69(10):4167-74. doi: 10.1158/0008-5472.CAN-08-4859. Epub 2009 May 12.
9
Biomimetic approach to tissue engineering.
Semin Cell Dev Biol. 2009 Aug;20(6):665-73. doi: 10.1016/j.semcdb.2008.12.008. Epub 2008 Dec 25.
10
Cell-cell mechanical communication through compliant substrates.
Biophys J. 2008 Dec 15;95(12):6044-51. doi: 10.1529/biophysj.107.127662. Epub 2008 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验