Suppr超能文献

IRF8 突变与人类树突状细胞免疫缺陷。

IRF8 mutations and human dendritic-cell immunodeficiency.

机构信息

Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.

出版信息

N Engl J Med. 2011 Jul 14;365(2):127-38. doi: 10.1056/NEJMoa1100066. Epub 2011 Apr 27.

Abstract

BACKGROUND

The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. Disseminated infection caused by bacille Calmette-Guérin (BCG) vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected persons, the cause of disseminated BCG disease is unexplained.

METHODS

We evaluated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, who required hematopoietic stem-cell transplantation. We also studied two otherwise healthy subjects with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic-cell compartments in these three subjects and sequenced candidate genes in which mutations could plausibly confer susceptibility to BCG disease.

RESULTS

We detected two distinct disease-causing mutations affecting interferon regulatory factor 8 (IRF8). Both K108E and T80A mutations impair IRF8 transcriptional activity by disrupting the interaction between IRF8 and DNA. The K108E variant was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. The T80A variant was associated with an autosomal dominant, milder immunodeficiency and a selective depletion of CD11c+CD1c+ circulating dendritic cells.

CONCLUSIONS

These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes. They also show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity. (Funded by the Medical Research Council and others.).

摘要

背景

人类原发性免疫缺陷的基因分析确定了特定细胞群体和分子途径在宿主抗感染中的贡献。卡介苗(BCG)疫苗引起的播散性感染是原发性免疫缺陷的早期表现,如严重联合免疫缺陷。在许多受影响的人中,播散性 BCG 病的原因尚不清楚。

方法

我们评估了一名表现出严重免疫缺陷特征的婴儿,包括早期播散性 BCG 病,该婴儿需要进行造血干细胞移植。我们还研究了另外两名在儿童时期患有播散性但可治愈的 BCG 病的健康受试者。我们对这三个受试者的单核细胞和树突状细胞进行了特征描述,并对可能导致 BCG 病易感性的候选基因进行了测序。

结果

我们检测到两种不同的致病突变,影响干扰素调节因子 8(IRF8)。K108E 和 T80A 突变均通过破坏 IRF8 与 DNA 的相互作用,损害 IRF8 的转录活性。K108E 变体与常染色体隐性严重免疫缺陷相关,其特征是循环单核细胞和树突状细胞完全缺失。T80A 变体与常染色体显性、较轻的免疫缺陷和 CD11c+CD1c+循环树突状细胞的选择性耗竭相关。

结论

这些发现定义了一类影响单核吞噬细胞分化的人类原发性免疫缺陷。它们还表明,人类 IRF8 对于单核细胞和树突状细胞的发育以及抗分枝杆菌免疫至关重要。(由医学研究委员会等资助)。

相似文献

1
IRF8 mutations and human dendritic-cell immunodeficiency.
N Engl J Med. 2011 Jul 14;365(2):127-38. doi: 10.1056/NEJMoa1100066. Epub 2011 Apr 27.
2
Genetic determinants of susceptibility to Mycobacterial infections: IRF8, a new kid on the block.
Adv Exp Med Biol. 2013;783:45-80. doi: 10.1007/978-1-4614-6111-1_3.
5
Evaluation of interleukin-12 receptor β1 and interferon gamma receptor 1 deficiency in patients with disseminated BCG infection.
Allergol Immunopathol (Madr). 2019 Jan-Feb;47(1):38-42. doi: 10.1016/j.aller.2018.06.005. Epub 2018 Sep 27.
6
Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells.
Stem Cells. 2017 Apr;35(4):898-908. doi: 10.1002/stem.2565. Epub 2017 Feb 1.
7
Dendritic cell analysis in primary immunodeficiency.
Curr Opin Allergy Clin Immunol. 2016 Dec;16(6):530-540. doi: 10.1097/ACI.0000000000000322.
8
Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases.
Hum Genet. 2020 Jun;139(6-7):707-721. doi: 10.1007/s00439-020-02154-2. Epub 2020 Mar 30.
9
Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs).
J Formos Med Assoc. 2011 Dec;110(12):750-8. doi: 10.1016/j.jfma.2011.11.004. Epub 2011 Dec 23.
10
Molecular, Immunological, and Clinical Features of 16 Iranian Patients with Mendelian Susceptibility to Mycobacterial Disease.
J Clin Immunol. 2019 Apr;39(3):287-297. doi: 10.1007/s10875-019-0593-4. Epub 2019 Feb 4.

引用本文的文献

1
2
Overview of Mendelian Susceptibility to Mycobacterial Diseases (MSMD).
Cureus. 2025 Jun 12;17(6):e85872. doi: 10.7759/cureus.85872. eCollection 2025 Jun.
4
Overview of dendritic cells subsets and their involvement in immune-related pathological disease.
Bioimpacts. 2025 Jan 29;15:30671. doi: 10.34172/bi.30671. eCollection 2025.
5
Human immunity to fungal infections.
J Exp Med. 2025 Jun 2;222(6). doi: 10.1084/jem.20241215. Epub 2025 Apr 15.
6
IRF8 aggravates nonalcoholic fatty liver disease via BMAL1/PPARγ axis.
Genes Dis. 2024 May 20;12(3):101333. doi: 10.1016/j.gendis.2024.101333. eCollection 2025 May.
7
Decoding Immunobiology Through Genetic Errors of Immunity.
Annu Rev Immunol. 2025 Apr;43(1):285-311. doi: 10.1146/annurev-immunol-082323-124920. Epub 2025 Feb 14.
8
One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.
Blood. 2025 May 29;145(22):2549-2560. doi: 10.1182/blood.2024026683.
9
Type 2 conventional dendritic cell functional heterogeneity: ontogenically committed or environmentally plastic?
Trends Immunol. 2025 Feb;46(2):104-120. doi: 10.1016/j.it.2024.12.005. Epub 2025 Jan 21.

本文引用的文献

1
The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency.
J Exp Med. 2011 Feb 14;208(2):227-34. doi: 10.1084/jem.20101459. Epub 2011 Jan 17.
2
Fate mapping analysis reveals that adult microglia derive from primitive macrophages.
Science. 2010 Nov 5;330(6005):841-5. doi: 10.1126/science.1194637. Epub 2010 Oct 21.
3
Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors.
Immunity. 2010 Sep 24;33(3):375-86. doi: 10.1016/j.immuni.2010.08.012. Epub 2010 Sep 9.
4
The combination of gene perturbation assay and ChIP-chip reveals functional direct target genes for IRF8 in THP-1 cells.
Mol Immunol. 2010 Aug;47(14):2295-302. doi: 10.1016/j.molimm.2010.05.289. Epub 2010 Jun 22.
6
Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells.
J Exp Med. 2010 Jun 7;207(6):1261-71. doi: 10.1084/jem.20092618. Epub 2010 May 17.
9
Unravelling mononuclear phagocyte heterogeneity.
Nat Rev Immunol. 2010 Jun;10(6):453-60. doi: 10.1038/nri2784.
10
Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets.
Immunol Rev. 2010 Mar;234(1):177-98. doi: 10.1111/j.0105-2896.2009.00868.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验