Suppr超能文献

下游 RNA 聚合酶-启动子相互作用在起始复合物形成中的关键作用。

A critical role of downstream RNA polymerase-promoter interactions in the formation of initiation complex.

机构信息

Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.

出版信息

J Biol Chem. 2011 Jun 24;286(25):22600-8. doi: 10.1074/jbc.M111.247080. Epub 2011 Apr 27.

Abstract

Nucleation of promoter melting in bacteria is coupled with RNA polymerase (RNAP) binding to a conserved -10 promoter element located at the upstream edge of the transcription bubble. The mechanism of downstream propagation of the transcription bubble to include the transcription start site is unclear. Here we introduce new model downstream fork junction promoter fragments that specifically bind RNAP and mimic the downstream segment of promoter complexes. We demonstrate that RNAP binding to downstream fork junctions is coupled with DNA melting around the transcription start point. Consequently, certain downstream fork junction probes can serve as transcription templates. Using a protein beacon fluorescent method, we identify structural determinants of affinity and transcription activity of RNAP-downstream fork junction complexes. Measurements of RNAP interaction with double-stranded promoter fragments reveal that the strength of RNAP interactions with downstream DNA plays a critical role in promoter opening and that the length of the downstream duplex must exceed a critical length for efficient formation of transcription competent open promoter complex.

摘要

细菌中启动子熔解的成核与 RNA 聚合酶 (RNAP) 结合到位于转录泡上游边缘的保守 -10 启动子元件相关。转录泡下游延伸以包含转录起始位点的机制尚不清楚。在这里,我们引入了新的模型下游叉结启动子片段,其特异性结合 RNAP 并模拟启动子复合物的下游片段。我们证明了 RNAP 与下游叉结的结合与转录起始点周围的 DNA 熔解相关。因此,某些下游叉结探针可以作为转录模板。使用蛋白信标荧光法,我们确定了 RNAP-下游叉结复合物的亲和力和转录活性的结构决定因素。对 RNAP 与双链启动子片段相互作用的测量表明,RNAP 与下游 DNA 的相互作用强度在启动子打开中起着关键作用,并且下游双链体的长度必须超过有效形成转录活性开放启动子复合物的临界长度。

相似文献

1
A critical role of downstream RNA polymerase-promoter interactions in the formation of initiation complex.
J Biol Chem. 2011 Jun 24;286(25):22600-8. doi: 10.1074/jbc.M111.247080. Epub 2011 Apr 27.
2
Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.
J Mol Biol. 2014 Dec 12;426(24):3973-3984. doi: 10.1016/j.jmb.2014.10.005. Epub 2014 Oct 13.
4
Molecular mechanism of transcription inhibition by phage T7 gp2 protein.
J Mol Biol. 2011 Nov 11;413(5):1016-27. doi: 10.1016/j.jmb.2011.09.029. Epub 2011 Sep 21.
6
Structure of a bacterial RNA polymerase holoenzyme open promoter complex.
Elife. 2015 Sep 8;4:e08504. doi: 10.7554/eLife.08504.
8
Escherichia coli RNA polymerase contacts outside the -10 promoter element are not essential for promoter melting.
J Biol Chem. 2005 Nov 18;280(46):38219-27. doi: 10.1074/jbc.M507984200. Epub 2005 Sep 15.
10
The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid.
J Mol Biol. 2006 Aug 25;361(4):634-43. doi: 10.1016/j.jmb.2006.05.034. Epub 2006 Jun 5.

引用本文的文献

1
G-Quadruplex Structures in Bacteria: Biological Relevance and Potential as an Antimicrobial Target.
J Bacteriol. 2021 Jun 8;203(13):e0057720. doi: 10.1128/JB.00577-20.
2
Direct binding of TFEα opens DNA binding cleft of RNA polymerase.
Nat Commun. 2020 Nov 30;11(1):6123. doi: 10.1038/s41467-020-19998-x.
5
Novel RNA Polymerase Binding Protein Encoded by Bacteriophage T5.
Viruses. 2020 Jul 26;12(8):807. doi: 10.3390/v12080807.
6
Mix-and-matching as a promoter recognition mechanism by ECF σ factors.
BMC Evol Biol. 2017 Feb 7;17(Suppl 1):12. doi: 10.1186/s12862-016-0865-z.
8
E. coli RNA Polymerase Determinants of Open Complex Lifetime and Structure.
J Mol Biol. 2015 Jul 31;427(15):2435-2450. doi: 10.1016/j.jmb.2015.05.024. Epub 2015 Jun 6.
9
Initial events in bacterial transcription initiation.
Biomolecules. 2015 May 27;5(2):1035-62. doi: 10.3390/biom5021035.
10
RNA polymerase molecular beacon as tool for studies of RNA polymerase-promoter interactions.
Methods. 2015 Sep 15;86:19-26. doi: 10.1016/j.ymeth.2015.04.033. Epub 2015 May 5.

本文引用的文献

3
T7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2247-52. doi: 10.1073/pnas.0907908107. Epub 2010 Jan 19.
4
Allosteric control of Escherichia coli rRNA promoter complexes by DksA.
Genes Dev. 2009 Jan 15;23(2):236-48. doi: 10.1101/gad.1745409.
5
The RNA polymerase "switch region" is a target for inhibitors.
Cell. 2008 Oct 17;135(2):295-307. doi: 10.1016/j.cell.2008.09.033.
6
Effect of loop distortion on the stability and structural dynamics of DNA hairpin and dumbbell conjugates.
J Phys Chem B. 2008 Sep 11;112(36):11415-21. doi: 10.1021/jp802378a. Epub 2008 Aug 16.
8
Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7833-8. doi: 10.1073/pnas.0609888104. Epub 2007 Apr 30.
9
Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism.
Science. 2006 Nov 17;314(5802):1144-7. doi: 10.1126/science.1131399.
10
Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching.
Science. 2006 Nov 17;314(5802):1139-43. doi: 10.1126/science.1131398.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验