Suppr超能文献

用于有机互补电路的 n 通道半导体材料设计。

n-Channel semiconductor materials design for organic complementary circuits.

机构信息

Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.

出版信息

Acc Chem Res. 2011 Jul 19;44(7):501-10. doi: 10.1021/ar200006r. Epub 2011 May 26.

Abstract

Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an emphasis on structure-property relationships. We then examine the synthesis and properties of carbonyl-functionalized oligomers, which constitute second-generation n-channel oligothiophenes, in both vacuum- and solution-processed FETs. These materials have high carrier mobilities and good air stability. In parallel, exceptionally electron-deficient cyano-functionalized arylenediimide derivatives are discussed as early examples of thermodynamically air-stable, high-performance n-channel semiconductors; they exhibit record electron mobilities of up to 0.64 cm(2)/V·s. Furthermore, we provide an overview of highly soluble ladder-type macromolecular semiconductors as OFET components, which combine ambient stability with solution processibility. A high electron mobility of 0.16 cm(2)/V·s is obtained under ambient conditions for solution-processed films. Finally, examples of polymeric n-channel semiconductors with electron mobilities as high as 0.85 cm(2)/V·s are discussed; these constitute an important advance toward fully printed polymeric electronic circuitry. Density functional theory (DFT) computations reveal important trends in molecular physicochemical and semiconducting properties, which, when combined with experimental data, shed new light on molecular charge transport characteristics. Our data provide the basis for a fundamental understanding of charge transport in high-performance n-channel organic semiconductors. Moreover, our results provide a road map for developing functional, complementary organic circuitry, which requires combining p- and n-channel transistors.

摘要

有机半导体与传统的非晶或晶体硅等无机材料相比具有独特的性质。一些重要的优点包括其在柔性衬底上低温处理的适应性、低成本、高速制造的适应性以及可调谐的电子特性。这些特性对于各种下一代电子产品至关重要,包括低功率柔性显示器、廉价的射频识别 (RFID) 标签和可打印传感器等。因此,基于π共轭有机分子或聚合物的新材料的制备一直是过去十年中科学和技术研究的重点。目前,p 型(空穴传输)材料是有机半导体的主要类别。相比之下,高性能 n 型(电子传输)半导体则相对较少,但对于开发塑料电子器件(如有机场效应晶体管 (OFET))具有重要意义。在本专题介绍中,我们强调了我们团队在实现基于寡聚噻吩、芳二酰亚胺和(双)茚并芴骨架的适度和高度电子缺电子 n 型寡聚物和聚合物方面所取得的进展。我们已经合成并表征了一系列结构相关的半导体,并通过光学、电化学、热学、微观结构(单晶和薄膜)和电学测量研究了详细的结构-性质关系。我们的结果揭示了各种长度尺度上的结构参数与电荷输运性质之间高度直观的相关性。我们首先讨论了用全氟烷基和全氟芳基取代基官能化的寡聚噻吩,它们代表了本项目中开发的高性能 n 型半导体的最初实例。这些化合物的 OFET 特性与结构-性质关系一起呈现。然后,我们研究了羰基官能化的寡聚物的合成和性质,它们构成了第二代 n 型寡聚噻吩,在真空和溶液处理 FET 中都有。这些材料具有高载流子迁移率和良好的空气稳定性。同时,我们还讨论了异常电子缺电子的氰基官能化的芳二酰亚胺衍生物,它们是热力学上稳定的、高性能 n 型半导体的早期实例;它们表现出高达 0.64 cm 2/V·s 的记录电子迁移率。此外,我们还概述了作为 OFET 组件的可溶性梯型大分子半导体,它们结合了环境稳定性和溶液加工性。在溶液处理的薄膜中,在环境条件下获得了 0.16 cm 2/V·s 的高电子迁移率。最后,我们讨论了电子迁移率高达 0.85 cm 2/V·s 的聚合物 n 型半导体的实例;这是朝着完全印刷的聚合物电子电路迈进的重要一步。密度泛函理论 (DFT) 计算揭示了分子物理化学和半导体性质的重要趋势,这些趋势与实验数据相结合,为分子电荷输运特性提供了新的见解。我们的数据为深入了解高性能 n 型有机半导体中的电荷输运提供了基础。此外,我们的结果为开发功能性互补的有机电路提供了路线图,这需要结合 p 型和 n 型晶体管。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验