Suppr超能文献

斑马鱼的再生能力可逆转由遗传心肌细胞缺失引起的心力衰竭。

The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion.

机构信息

Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Development. 2011 Aug;138(16):3421-30. doi: 10.1242/dev.068601. Epub 2011 Jul 13.

Abstract

Natural models of heart regeneration in lower vertebrates such as zebrafish are based on invasive surgeries causing mechanical injuries that are limited in size. Here, we created a genetic cell ablation model in zebrafish that facilitates inducible destruction of a high percentage of cardiomyocytes. Cell-specific depletion of over 60% of the ventricular myocardium triggered signs of cardiac failure that were not observed after partial ventricular resection, including reduced animal exercise tolerance and sudden death in the setting of stressors. Massive myocardial loss activated robust cellular and molecular responses by endocardial, immune, epicardial and vascular cells. Destroyed cardiomyocytes fully regenerated within several days, restoring cardiac anatomy, physiology and performance. Regenerated muscle originated from spared cardiomyocytes that acquired ultrastructural and electrophysiological characteristics of de-differentiation and underwent vigorous proliferation. Our study indicates that genetic depletion of cardiomyocytes, even at levels so extreme as to elicit signs of cardiac failure, can be reversed by natural regenerative capacity in lower vertebrates such as zebrafish.

摘要

在较低等的脊椎动物中,如斑马鱼,自然的心脏再生模型是基于会造成机械损伤的侵入性手术,而这种损伤的大小是有限的。在这里,我们在斑马鱼中创建了一种遗传细胞消融模型,该模型可以诱导破坏高比例的心肌细胞。心室心肌的特异性耗竭超过 60%,会引发心力衰竭的迹象,而在部分心室切除后则不会观察到这些迹象,包括动物运动耐受力降低和在应激条件下突然死亡。大量的心肌损失激活了心内膜、免疫、心外膜和血管细胞的强大的细胞和分子反应。受损的心肌细胞在几天内完全再生,恢复了心脏的解剖、生理和功能。再生的肌肉来源于未受损的心肌细胞,这些细胞获得了去分化的超微结构和电生理特征,并经历了强烈的增殖。我们的研究表明,即使在低等脊椎动物如斑马鱼中,通过自然的再生能力,也可以逆转心肌细胞的遗传耗竭,即使这种耗竭的程度足以引发心力衰竭的迹象。

相似文献

1
The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion.
Development. 2011 Aug;138(16):3421-30. doi: 10.1242/dev.068601. Epub 2011 Jul 13.
2
Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1403-8. doi: 10.1073/pnas.1311705111. Epub 2014 Jan 13.
3
Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes.
Nature. 2010 Mar 25;464(7288):601-5. doi: 10.1038/nature08804.
4
In vivo cardiac reprogramming contributes to zebrafish heart regeneration.
Nature. 2013 Jun 27;498(7455):497-501. doi: 10.1038/nature12322. Epub 2013 Jun 19.
5
Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling.
Nature. 2015 Jun 11;522(7555):226-230. doi: 10.1038/nature14325. Epub 2015 May 4.
7
Migration of cardiomyocytes is essential for heart regeneration in zebrafish.
Development. 2012 Nov;139(22):4133-42. doi: 10.1242/dev.079756. Epub 2012 Oct 3.
8
A Genetic Cardiomyocyte Ablation Model for the Study of Heart Regeneration in Zebrafish.
Methods Mol Biol. 2021;2158:71-80. doi: 10.1007/978-1-0716-0668-1_7.
9
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation.
Nature. 2010 Mar 25;464(7288):606-9. doi: 10.1038/nature08899.
10
Zebrafish heart regenerates after chemoptogenetic cardiomyocyte depletion.
Dev Dyn. 2021 Jul;250(7):986-1000. doi: 10.1002/dvdy.305. Epub 2021 Feb 8.

引用本文的文献

1
Zebrafish Models of Induced Lymphangiogenesis: Current Advancements and Therapeutic Discovery.
Pharmaceuticals (Basel). 2025 Jul 21;18(7):1076. doi: 10.3390/ph18071076.
3
Induced Mitophagy Promotes Cell Cycle Re-Entry in Adult Cardiomyocytes.
Cells. 2025 Jun 6;14(12):853. doi: 10.3390/cells14120853.
4
Nr4a1 modulates inflammation and heart regeneration in zebrafish.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204395. Epub 2025 Jul 11.
5
Cardiac Regeneration and Repair in Zebrafish and Mammalian Models.
Curr Cardiol Rep. 2025 Jun 17;27(1):95. doi: 10.1007/s11886-025-02235-6.
6
Cell cycle arrest of cardiomyocytes in the context of cardiac regeneration.
Front Cardiovasc Med. 2025 Apr 28;12:1538546. doi: 10.3389/fcvm.2025.1538546. eCollection 2025.
8
Nkx2.7 is a conserved regulator of craniofacial development.
Nat Commun. 2025 Apr 23;16(1):3802. doi: 10.1038/s41467-025-58821-3.
9
Regenerative therapies for myocardial infarction: exploring the critical role of energy metabolism in achieving cardiac repair.
Front Cardiovasc Med. 2025 Feb 7;12:1533105. doi: 10.3389/fcvm.2025.1533105. eCollection 2025.
10
A cardiac transcriptional enhancer is repurposed during regeneration to activate an anti-proliferative program.
Development. 2025 Feb 15;152(4). doi: 10.1242/dev.204458. Epub 2025 Feb 17.

本文引用的文献

1
tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration.
Development. 2011 Jul;138(14):2895-902. doi: 10.1242/dev.067041. Epub 2011 Jun 8.
3
The zebrafish heart regenerates after cryoinjury-induced myocardial infarction.
BMC Dev Biol. 2011 Apr 7;11:21. doi: 10.1186/1471-213X-11-21.
4
Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish.
Development. 2011 May;138(9):1663-74. doi: 10.1242/dev.060897. Epub 2011 Mar 23.
6
Transient regenerative potential of the neonatal mouse heart.
Science. 2011 Feb 25;331(6020):1078-80. doi: 10.1126/science.1200708.
7
PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts.
Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17206-10. doi: 10.1073/pnas.0915016107. Epub 2010 Sep 21.
8
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.
Cell. 2010 Aug 6;142(3):375-86. doi: 10.1016/j.cell.2010.07.002.
9
Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca(2+) channel.
Nature. 2010 Aug 12;466(7308):874-8. doi: 10.1038/nature09249. Epub 2010 Jul 25.
10
Voltage-gated sodium channels are required for heart development in zebrafish.
Circ Res. 2010 Apr 30;106(8):1342-50. doi: 10.1161/CIRCRESAHA.109.213132. Epub 2010 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验