Suppr超能文献

艰难梭菌鞭毛蛋白 FliC 和 FliD 的诱变分析及其对仓鼠毒力的贡献。

Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters.

机构信息

Department of Microbiology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.

出版信息

Infect Immun. 2011 Oct;79(10):4061-7. doi: 10.1128/IAI.05305-11. Epub 2011 Jul 25.

Abstract

Although toxins A and B are known to be important contributors to the acute phase of Clostridium difficile infection, the role of colonization and adherence to host tissues in the overall pathogenesis of these organisms remains unclear. Consequently, we used the recently introduced intron-based ClosTron gene interruption system to eliminate the expression of two reported C. difficile colonization factors, the major flagellar structural subunit (FliC) and the flagellar cap protein (FliD), to gain greater insight into how flagella and motility contribute to C. difficile's pathogenic strategy. The results demonstrate that interrupting either the fliC or the fliD gene results in a complete loss of flagella, as well as motility, in C. difficile. However, both the fliC and fliD mutant strains adhered better than the wild-type 630Δerm strain to human intestine-derived Caco-2 cells, suggesting that flagella and motility do not contribute to, or may even interfere with, C. difficile adherence to epithelial cell surfaces in vitro. Moreover, we found that the mutant strains were more virulent in hamsters, indicating either that flagella are unnecessary for virulence or that repression of motility may be a pathogenic strategy employed by C. difficile in hamsters.

摘要

虽然毒素 A 和 B 被认为是艰难梭菌感染急性期的重要致病因子,但定植和黏附宿主组织在这些病原体的总体发病机制中的作用仍不清楚。因此,我们使用最近引入的基于内含子的 ClosTron 基因中断系统来消除两种已报道的艰难梭菌定植因子(主要鞭毛结构亚基 [FliC]和鞭毛帽蛋白 [FliD])的表达,以更深入地了解鞭毛和运动如何有助于艰难梭菌的致病策略。结果表明,中断 fliC 或 fliD 基因会导致艰难梭菌完全丧失鞭毛和运动能力。然而,与野生型 630Δerm 菌株相比,fliC 和 fliD 突变株对人肠源 Caco-2 细胞的黏附能力更强,表明鞭毛和运动能力不会促进或可能干扰艰难梭菌在体外黏附上皮细胞表面。此外,我们发现突变株在仓鼠中的毒力更强,这表明鞭毛对于毒力不是必需的,或者抑制运动可能是艰难梭菌在仓鼠中采用的一种致病策略。

相似文献

2
The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain.
PLoS One. 2013 Sep 23;8(9):e73026. doi: 10.1371/journal.pone.0073026. eCollection 2013.
3
Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization.
Infect Immun. 2001 Dec;69(12):7937-40. doi: 10.1128/IAI.69.12.7937-7940.2001.
4
The role of flagella in Clostridium difficile pathogenicity.
Trends Microbiol. 2015 May;23(5):275-82. doi: 10.1016/j.tim.2015.01.004. Epub 2015 Feb 4.
5
A genetic switch controls the production of flagella and toxins in Clostridium difficile.
PLoS Genet. 2017 Mar 27;13(3):e1006701. doi: 10.1371/journal.pgen.1006701. eCollection 2017 Mar.
6
The flagellin FliC of Clostridium difficile is responsible for pleiotropic gene regulation during in vivo infection.
PLoS One. 2014 May 19;9(5):e96876. doi: 10.1371/journal.pone.0096876. eCollection 2014.
8
Modulation of toxin production by the flagellar regulon in Clostridium difficile.
Infect Immun. 2012 Oct;80(10):3521-32. doi: 10.1128/IAI.00224-12. Epub 2012 Jul 30.
9
Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile.
PLoS Pathog. 2020 Aug 12;16(8):e1008708. doi: 10.1371/journal.ppat.1008708. eCollection 2020 Aug.

引用本文的文献

1
In-depth characterization of accessory gene regulator loci and associated virulence factors in isolates.
Curr Res Microb Sci. 2025 Jul 1;9:100435. doi: 10.1016/j.crmicr.2025.100435. eCollection 2025.
2
Flagellar switch inverted repeats impact heterogeneity in flagellar gene expression and thus C. difficile RT027/MLST1 virulence.
Cell Rep. 2025 Jun 24;44(6):115830. doi: 10.1016/j.celrep.2025.115830. Epub 2025 Jun 11.
3
Flagellar switch inverted repeat impacts flagellar invertibility and varies RT027/MLST1 virulence.
bioRxiv. 2024 Sep 24:2023.06.22.546185. doi: 10.1101/2023.06.22.546185.
4
Characterization of the Clostridioides difficile 630Δerm putative Pro-Pro endopeptidase CD1597.
Access Microbiol. 2024 Oct 8;6(10). doi: 10.1099/acmi.0.000855.v3. eCollection 2024.
6
Environmental and Nutritional Parameters Modulating Genetic Expression for Virulence Factors of .
Antibiotics (Basel). 2024 Apr 16;13(4):365. doi: 10.3390/antibiotics13040365.
7
Flagella.
Int J Mol Sci. 2024 Feb 12;25(4):2202. doi: 10.3390/ijms25042202.
8
Immunization Strategies Against Clostridioides difficile.
Adv Exp Med Biol. 2024;1435:117-150. doi: 10.1007/978-3-031-42108-2_7.
9
Revised Model for the Type A Glycan Biosynthetic Pathway in Strain 630Δ Based on Quantitative Proteomics of - Mutant Strains.
ACS Infect Dis. 2023 Dec 8;9(12):2665-2674. doi: 10.1021/acsinfecdis.3c00485. Epub 2023 Nov 15.
10
Biofilm Formation of , Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI.
Microorganisms. 2023 Aug 26;11(9):2161. doi: 10.3390/microorganisms11092161.

本文引用的文献

1
TcdB or not TcdB: a tale of two Clostridium difficile toxins.
Future Microbiol. 2011 Feb;6(2):121-3. doi: 10.2217/fmb.10.169.
2
Clostridium difficile infection: An overview of the disease and its pathogenesis, epidemiology and interventions.
Gut Microbes. 2010 Jul;1(4):234-242. doi: 10.4161/gmic.1.4.12706. Epub 2010 Jun 16.
3
Clostridium difficile infection: epidemiology, risk factors and management.
Nat Rev Gastroenterol Hepatol. 2011 Jan;8(1):17-26. doi: 10.1038/nrgastro.2010.190. Epub 2010 Nov 30.
4
The role of toxin A and toxin B in Clostridium difficile infection.
Nature. 2010 Oct 7;467(7316):711-3. doi: 10.1038/nature09397. Epub 2010 Sep 15.
5
A real-time quantitative PCR assay for evaluating Clostridium difficile adherence to differentiated intestinal Caco-2 cells.
J Med Microbiol. 2010 Aug;59(Pt 8):920-924. doi: 10.1099/jmm.0.019752-0. Epub 2010 Apr 22.
6
Motility and flagellar glycosylation in Clostridium difficile.
J Bacteriol. 2009 Nov;191(22):7050-62. doi: 10.1128/JB.00861-09. Epub 2009 Sep 11.
7
The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors.
J Bacteriol. 2009 Nov;191(21):6555-70. doi: 10.1128/JB.00949-09. Epub 2009 Aug 28.
8
Clostridium difficile infection: new developments in epidemiology and pathogenesis.
Nat Rev Microbiol. 2009 Jul;7(7):526-36. doi: 10.1038/nrmicro2164.
9
A modular system for Clostridium shuttle plasmids.
J Microbiol Methods. 2009 Jul;78(1):79-85. doi: 10.1016/j.mimet.2009.05.004. Epub 2009 May 13.
10
Clostridium difficile is no longer just a nosocomial infection or an infection of adults.
Int J Antimicrob Agents. 2009 Mar;33 Suppl 1:S42-5. doi: 10.1016/S0924-8579(09)70016-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验