Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
Diabetologia. 2011 Oct;54(10):2525-32. doi: 10.1007/s00125-011-2257-7. Epub 2011 Jul 27.
AIMS/HYPOTHESIS: The aim of this study was to reduce the frequency of diabetic eye-screening visits, while maintaining safety, by using information technology and individualised risk assessment to determine screening intervals.
A mathematical algorithm was created based on epidemiological data on risk factors for diabetic retinopathy. Through a website, www.risk.is , the algorithm receives clinical data, including type and duration of diabetes, HbA(1c) or mean blood glucose, blood pressure and the presence and grade of retinopathy. These data are used to calculate risk for sight-threatening retinopathy for each individual's worse eye over time. A risk margin is defined and the algorithm recommends the screening interval for each patient with standardised risk of developing sight-threatening retinopathy (STR) within the screening interval. We set the risk margin so that the same number of patients develop STR within the screening interval with either fixed annual screening or our individualised screening system. The database for diabetic retinopathy at the Department of Ophthalmology, Aarhus University Hospital, Denmark, was used to empirically test the efficacy of the algorithm. Clinical data exist for 5,199 patients for 20 years and this allows testing of the algorithm in a prospective manner.
In the Danish diabetes database, the algorithm recommends screening intervals ranging from 6 to 60 months with a mean of 29 months. This is 59% fewer visits than with fixed annual screening. This amounts to 41 annual visits per 100 patients.
Information technology based on epidemiological data may facilitate individualised determination of screening intervals for diabetic eye disease. Empirical testing suggests that this approach may be less expensive than conventional annual screening, while not compromising safety. The algorithm determines individual risk and the screening interval is individually determined based on each person's risk profile. The algorithm has potential to save on healthcare resources and patients' working hours by reducing the number of screening visits for an ever increasing number of diabetic patients in the world.
目的/假设:本研究的目的是通过使用信息技术和个体化风险评估来确定筛查间隔,从而减少糖尿病眼病筛查的次数,同时保持安全性。
根据糖尿病视网膜病变危险因素的流行病学数据,创建了一个数学算法。通过一个名为 www.risk.is 的网站,该算法接收包括糖尿病类型和持续时间、HbA(1c)或平均血糖、血压以及视网膜病变的存在和程度在内的临床数据。这些数据用于计算每个人的较差眼睛随着时间的推移发生威胁视力的视网膜病变的风险。定义风险裕度,算法根据每个患者发生威胁视力的视网膜病变(STR)的标准化风险,为每个患者推荐筛查间隔。我们设定风险裕度,使得在筛查间隔内,采用固定的年度筛查或个体化筛查系统,都会有相同数量的患者发生 STR。丹麦奥胡斯大学医院眼科的糖尿病视网膜病变数据库用于对算法的疗效进行实证检验。该数据库包含 5199 名患者的 20 年临床数据,允许以前瞻性的方式对算法进行测试。
在丹麦糖尿病数据库中,该算法建议的筛查间隔为 6 至 60 个月,平均为 29 个月。这比固定的年度筛查减少了 59%的就诊次数。这相当于每 100 名患者每年有 41 次就诊。
基于流行病学数据的信息技术可以促进糖尿病眼病筛查间隔的个体化确定。实证检验表明,这种方法可能比传统的年度筛查更具成本效益,同时不会影响安全性。该算法确定个体风险,根据每个人的风险状况确定个体化的筛查间隔。该算法具有通过减少全世界日益增多的糖尿病患者的筛查次数来节省医疗资源和患者工作时间的潜力。