Baget-Bernaldiz Marc, Fontoba-Poveda Benilde, Romero-Aroca Pedro, Navarro-Gil Raul, Hernando-Comerma Adriana, Bautista-Perez Angel, Llagostera-Serra Monica, Morente-Lorenzo Cristian, Vizcarro Montse, Mira-Puerto Alejandra
Ophthalmology Service, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili [IISPV], Universitat Rovira i Virgili, 43204 Reus, Spain.
Responsible for Diabetic Retinopathy Eye Screening Program in Primary Care in Baix Llobregat Barcelona (Spain), Institut d'Investigació Sanitaria Pere Virgili [IISPV], 43204 Reus, Spain.
Diagnostics (Basel). 2024 Sep 9;14(17):1992. doi: 10.3390/diagnostics14171992.
This study aimed to test an artificial intelligence-based reading system (AIRS) capable of reading retinographies of type 2 diabetic (T2DM) patients and a predictive algorithm (DRPA) that predicts the risk of each patient with T2DM of developing diabetic retinopathy (DR).
We tested the ability of the AIRS to read and classify 15,297 retinal photographs from our database of diabetics and 1200 retinal images taken with Messidor-2 into the different DR categories. We tested the DRPA in a sample of 40,129 T2DM patients. The results obtained by the AIRS and the DRPA were then compared with those provided by four retina specialists regarding sensitivity (S), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), and area under the curve (AUC).
The results of testing the AIRS for identifying referral DR (RDR) in our database were ACC = 98.6, S = 96.7, SP = 99.8, PPV = 99.0, NPV = 98.0, and AUC = 0.958, and in Messidor-2 were ACC = 96.78%, S = 94.64%, SP = 99.14%, PPV = 90.54%, NPV = 99.53%, and AUC = 0.918. The results of our DRPA when predicting the presence of any type of DR were ACC = 0.97, S = 0.89, SP = 0.98, PPV = 0.79, NPV = 0.98, and AUC = 0.92.
The AIRS performed well when reading and classifying the retinographies of T2DM patients with RDR. The DRPA performed well in predicting the absence of DR based on some clinical variables.
本研究旨在测试一种基于人工智能的阅读系统(AIRS),该系统能够读取2型糖尿病(T2DM)患者的视网膜图像,以及一种预测算法(DRPA),用于预测每位T2DM患者发生糖尿病视网膜病变(DR)的风险。
我们测试了AIRS对来自我们糖尿病患者数据库的15297张视网膜照片以及用Messidor-2拍摄的1200张视网膜图像进行读取和分类到不同DR类别的能力。我们在40129例T2DM患者样本中测试了DRPA。然后将AIRS和DRPA获得的结果与四位视网膜专家提供的关于敏感性(S)、特异性(SP)、阳性预测值(PPV)、阴性预测值(NPV)、准确性(ACC)和曲线下面积(AUC)的结果进行比较。
在我们的数据库中测试AIRS识别转诊性DR(RDR)的结果为ACC = 98.6,S = 96.7,SP = 99.8,PPV = 99.0,NPV = 98.0,AUC = 0.958;在Messidor-2数据集中,ACC = 96.78%,S = 94.64%,SP = 99.14%,PPV = 9... 显示全部