Suppr超能文献

基于临床参数的糖尿病视网膜病变诊断支持系统的验证。

Validation of a Diagnostic Support System for Diabetic Retinopathy Based on Clinical Parameters.

机构信息

Ophthalmology Service, Hospital Universitat Sant Joan, Institut de Investigacio Sanitaria Pere Virgili, Universitat Rovira & Virgili, Reus, Spain.

Department of Computer Engineering and Mathematics, Universitat Rovira & Virgili, Reus, Spain.

出版信息

Transl Vis Sci Technol. 2021 Mar 1;10(3):17. doi: 10.1167/tvst.10.3.17.

Abstract

PURPOSE

To validate a clinical decision support system (CDSS) that estimates risk of diabetic retinopathy (DR) and to personalize screening protocols in type 2 diabetes mellitus (T2DM) patients.

METHODS

We utilized a CDSS based on a fuzzy random forest, integrated by fuzzy decision trees with the following variables: current age, sex, arterial hypertension, diabetes duration and treatment, HbA1c, glomerular filtration rate, microalbuminuria, and body mass index. Validation was made using the electronic health records of a sample of 101,802 T2DM patients. Diagnosis was made by retinal photographs, according to EURODIAB guidelines and the International Diabetic Retinopathy Classification.

RESULTS

The prevalence of DR was 19,759 patients (19.98%). Results yielded 16,593 (16.31%) true positives, 72,617 (71.33%) true negatives, 3165 (3.1%) false positives, and 9427 (9.26%) false negatives, with an accuracy of 0.876 (95% confidence interval [CI], 0.858-0.886), sensitivity of 84% (95% CI, 83.46-84.49), specificity of 88.5% (95% CI, 88.29-88.72), positive predictive value of 63.8% (95% CI, 63.18-64.35), negative predictive value of 95.8% (95% CI, 95.68-95.96), positive likelihood ratio of 7.30, and negative likelihood ratio of 0.18. The type 1 error was 0.115, and the type 2 error was 0.16.

CONCLUSIONS

We confirmed a good prediction rate for DR from a representative sample of T2DM in our population. Furthermore, the CDSS was able to offer an individualized screening protocol for each patient according to the calculated risk confidence value.

TRANSLATIONAL RELEVANCE

Results from this study will help to establish a novel strategy for personalizing screening for DR according to patient risk factors.

摘要

目的

验证一种用于估计糖尿病视网膜病变(DR)风险的临床决策支持系统(CDSS),并为 2 型糖尿病(T2DM)患者制定个性化的筛查方案。

方法

我们利用了一种基于模糊随机森林的 CDSS,该系统集成了具有以下变量的模糊决策树:当前年龄、性别、动脉高血压、糖尿病病程和治疗、糖化血红蛋白、肾小球滤过率、微量白蛋白尿和体重指数。验证是在一个由 101802 名 T2DM 患者组成的样本的电子健康记录中进行的。根据 EURODIAB 指南和国际糖尿病视网膜病变分类,通过视网膜照片进行诊断。

结果

DR 的患病率为 19759 例(19.98%)。结果产生了 16593 例(16.31%)真阳性、72617 例(71.33%)真阴性、3165 例(3.1%)假阳性和 9427 例(9.26%)假阴性,准确率为 0.876(95%置信区间[CI],0.858-0.886),敏感性为 84%(95% CI,83.46-84.49),特异性为 88.5%(95% CI,88.29-88.72),阳性预测值为 63.8%(95% CI,63.18-64.35),阴性预测值为 95.8%(95% CI,95.68-95.96),阳性似然比为 7.30,阴性似然比为 0.18。Ⅰ型错误为 0.115,Ⅱ型错误为 0.16。

结论

我们在该人群中对具有代表性的 T2DM 样本确认了对 DR 的良好预测率。此外,该 CDSS 能够根据计算出的风险置信值为每位患者提供个性化的筛查方案。

翻译

杨莹

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21c4/7980045/48a9b4a7ebc5/tvst-10-3-17-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验