Suppr超能文献

氨基酸依赖的 tRNA 合成酶编辑机制的转变。

Amino-acid-dependent shift in tRNA synthetase editing mechanisms.

机构信息

Department of Biochemistry, University of Illinois at Urbana-Champaign, 419 Roger Adams Laboratory, Box B-4, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.

出版信息

J Am Chem Soc. 2011 Nov 23;133(46):18510-3. doi: 10.1021/ja2048122. Epub 2011 Oct 31.

Abstract

Many aminoacyl-tRNA synthetases prevent mistranslation by relying upon proofreading activities at multiple stages of the aminoacylation reaction. In leucyl-tRNA synthetase (LeuRS), editing activities that precede or are subsequent to tRNA charging have been identified. Although both are operational, either the pre- or post-transfer editing activity can predominate. Yeast cytoplasmic LeuRS (ycLeuRS) misactivates structurally similar noncognate amino acids including isoleucine and methionine. We show that ycLeuRS has a robust post-transfer editing activity that efficiently clears tRNA(Leu) mischarged with isoleucine. In comparison, the enzyme's post-transfer hydrolytic activity against tRNA(Leu) mischarged with methionine is weak. Rather, methionyl-adenylate is cleared robustly via an enzyme-mediated pre-transfer editing activity. We hypothesize that, similar to E. coli LeuRS, ycLeuRS has coexisting functional pre- and post-transfer editing activities. In the case of ycLeuRS, a shift between the two editing pathways is triggered by the identity of the noncognate amino acid.

摘要

许多氨酰-tRNA 合成酶通过在氨酰化反应的多个阶段依赖校对活性来防止错译。在亮氨酰-tRNA 合成酶(LeuRS)中,已经鉴定出在 tRNA 充电之前或之后的编辑活性。尽管两者都起作用,但前或后转移编辑活性可以占主导地位。酵母细胞质亮氨酰-tRNA 合成酶(ycLeuRS)错误激活结构相似的非对应氨基酸,包括异亮氨酸和蛋氨酸。我们表明,ycLeuRS 具有强大的转移后编辑活性,可有效清除被异亮氨酸错误加载的 tRNA(Leu)。相比之下,该酶对被蛋氨酸错误加载的 tRNA(Leu)的转移后水解活性较弱。相反,通过酶介导的前转移编辑活性,甲硫氨酰腺苷酸被强烈清除。我们假设,与大肠杆菌 LeuRS 类似,ycLeuRS 具有共存的功能前转移和转移后编辑活性。在 ycLeuRS 的情况下,两种编辑途径之间的转换由非对应氨基酸的身份触发。

相似文献

1
Amino-acid-dependent shift in tRNA synthetase editing mechanisms.
J Am Chem Soc. 2011 Nov 23;133(46):18510-3. doi: 10.1021/ja2048122. Epub 2011 Oct 31.
2
An aminoacyl-tRNA synthetase with a defunct editing site.
Biochemistry. 2005 Mar 1;44(8):3010-6. doi: 10.1021/bi047901v.
3
CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function.
Biochemistry. 2000 Jun 6;39(22):6726-31. doi: 10.1021/bi000108r.
4
Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase.
Nucleic Acids Res. 2011 Jan;39(1):235-47. doi: 10.1093/nar/gkq763. Epub 2010 Aug 30.
5
Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.
Nucleic Acids Res. 1981 Jul 10;9(13):3105-17. doi: 10.1093/nar/9.13.3105.
6
Defects in transient tRNA translocation bypass tRNA synthetase quality control mechanisms.
J Biol Chem. 2009 Apr 24;284(17):11478-84. doi: 10.1074/jbc.M807395200. Epub 2009 Mar 3.
7
Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase.
J Mol Biol. 2018 Jan 5;430(1):1-16. doi: 10.1016/j.jmb.2017.10.024. Epub 2017 Oct 27.
9
Hydrolytic editing by a class II aminoacyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8916-20. doi: 10.1073/pnas.97.16.8916.

引用本文的文献

1
Conditional accumulation of toxic tRNAs to cause amino acid misincorporation.
Nucleic Acids Res. 2018 Sep 6;46(15):7831-7843. doi: 10.1093/nar/gky623.
2
Translational fidelity and mistranslation in the cellular response to stress.
Nat Microbiol. 2017 Aug 24;2:17117. doi: 10.1038/nmicrobiol.2017.117.
4
tRNA synthetase: tRNA aminoacylation and beyond.
Wiley Interdiscip Rev RNA. 2014 Jul-Aug;5(4):461-80. doi: 10.1002/wrna.1224. Epub 2014 Apr 4.
5
Emergence and evolution.
Top Curr Chem. 2014;344:43-87. doi: 10.1007/128_2013_423.
6
Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3817-22. doi: 10.1073/pnas.1218374110. Epub 2013 Feb 19.
7
The mechanism of pre-transfer editing in yeast mitochondrial threonyl-tRNA synthetase.
J Biol Chem. 2012 Aug 17;287(34):28518-25. doi: 10.1074/jbc.M112.372920. Epub 2012 Jul 6.

本文引用的文献

1
Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9378-83. doi: 10.1073/pnas.1016460108. Epub 2011 May 23.
2
Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase.
Nucleic Acids Res. 2011 Jan;39(1):235-47. doi: 10.1093/nar/gkq763. Epub 2010 Aug 30.
3
Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase.
J Biol Chem. 2010 Jul 30;285(31):23810-7. doi: 10.1074/jbc.M110.105320. Epub 2010 May 26.
4
Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases.
J Biol Chem. 2010 Jul 30;285(31):23799-809. doi: 10.1074/jbc.M110.133553. Epub 2010 May 24.
5
Aminoacyl-tRNA synthesis and translational quality control.
Annu Rev Microbiol. 2009;63:61-78. doi: 10.1146/annurev.micro.091208.073210.
6
tRNA-independent pretransfer editing by class I leucyl-tRNA synthetase.
J Biol Chem. 2009 Feb 6;284(6):3418-24. doi: 10.1074/jbc.M806717200. Epub 2008 Dec 9.
7
CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19223-8. doi: 10.1073/pnas.0809336105. Epub 2008 Nov 19.
8
Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase.
J Biol Chem. 2008 Mar 14;283(11):7128-34. doi: 10.1074/jbc.M709902200. Epub 2008 Jan 7.
9
Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain.
FEBS Lett. 2007 Oct 30;581(26):5110-4. doi: 10.1016/j.febslet.2007.09.058. Epub 2007 Oct 4.
10
Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing.
J Bacteriol. 2007 Dec;189(23):8765-8. doi: 10.1128/JB.01215-07. Epub 2007 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验