Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19222-7. doi: 10.1073/pnas.1116948108. Epub 2011 Nov 11.
The Orm family proteins are conserved integral membrane proteins of the endoplasmic reticulum that are key homeostatic regulators of sphingolipid biosynthesis. Orm proteins bind to and inhibit serine:palmitoyl-coenzyme A transferase, the first enzyme in sphingolipid biosynthesis. In Saccharomyces cerevisiae, Orm1 and Orm2 are inactivated by phosphorylation in response to compromised sphingolipid synthesis (e.g., upon addition of inhibitor myriocin), thereby restoring sphingolipid production. We show here that protein kinase Ypk1, one of an essential pair of protein kinases, is responsible for this regulatory modification. Myriocin-induced hyperphosphorylation of Orm1 and Orm2 does not occur in ypk1 cells, and immunopurified Ypk1 phosphorylates Orm1 and Orm2 robustly in vitro exclusively on three residues that are known myriocin-induced sites. Furthermore, the temperature-sensitive growth of ypk1(ts) ypk2 cells is substantially ameliorated by deletion of ORM genes, confirming that a primary physiological role of Ypk1-mediated phosphorylation is to negatively regulate Orm function. Ypk1 immunoprecipitated from myriocin-treated cells displays a higher specific activity for Orm phosphorylation than Ypk1 from untreated cells. To identify the mechanism underlying Ypk1 activation, we systematically tested several candidate factors and found that the target of rapamycin complex 2 (TORC2) kinase plays a key role. In agreement with prior evidence that a TORC2-dependent site in Ypk1(T662) is necessary for cells to exhibit a wild-type level of myriocin resistance, a Ypk1(T662A) mutant displays only weak Orm phosphorylation in vivo and only weak activation in vitro in response to sphingolipid depletion. Additionally, sphingolipid depletion increases phosphorylation of Ypk1 at T662. Thus, Ypk1 is both a sensor and effector of sphingolipid level, and reduction in sphingolipids stimulates Ypk1, at least in part, via TORC2-dependent phosphorylation.
Orm 家族蛋白是内质网中保守的完整膜蛋白,是神经酰胺生物合成的关键内稳态调节剂。Orm 蛋白与丝氨酸:棕榈酰辅酶 A 转移酶结合并抑制其活性,丝氨酸:棕榈酰辅酶 A 转移酶是神经酰胺生物合成的第一个酶。在酿酒酵母中,Orm1 和 Orm2 在受到神经鞘脂合成受损(例如,加入抑制剂米曲霉素)的刺激时通过磷酸化失活,从而恢复神经鞘脂的产生。我们在这里表明,蛋白激酶 Ypk1(一对必需蛋白激酶之一)负责这种调节修饰。米曲霉素诱导的 Orm1 和 Orm2 的过度磷酸化不会发生在 ypk1 细胞中,并且免疫纯化的 Ypk1 在体外仅在三个已知的米曲霉素诱导的位点上强烈地磷酸化 Orm1 和 Orm2。此外,ypk1(ts)ypk2 细胞的温度敏感生长因 ORM 基因的缺失而得到显著改善,这证实了 Ypk1 介导的磷酸化的主要生理作用是负调节 Orm 功能。从米曲霉素处理的细胞中免疫沉淀的 Ypk1 对 Orm 磷酸化的比活高于未经处理的细胞中的 Ypk1。为了确定 Ypk1 激活的机制,我们系统地测试了几种候选因子,发现雷帕霉素复合物 2 (TORC2) 激酶是关键。与先前的证据一致,即 Ypk1(T662)中的 TORC2 依赖性位点对于细胞表现出米曲霉素抗性的野生型水平是必需的,Ypk1(T662A)突变体在体内仅显示微弱的 Orm 磷酸化,并且在响应神经鞘脂耗竭时仅在体外显示微弱的激活。此外,神经鞘脂耗竭增加了 Ypk1 在 T662 处的磷酸化。因此,Ypk1 既是神经鞘脂水平的传感器又是效应器,并且神经鞘脂的减少至少部分地通过 TORC2 依赖性磷酸化刺激 Ypk1。