Suppr超能文献

甘油酯信号改变 mTOR 复合物 2(mTORC2)以减少胰岛素信号。

Glycerolipid signals alter mTOR complex 2 (mTORC2) to diminish insulin signaling.

机构信息

Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1667-72. doi: 10.1073/pnas.1110730109. Epub 2012 Jan 17.

Abstract

Increased flux through the glycerolipid synthesis pathway impairs the ability of insulin to inhibit hepatic gluconeogenesis, but the exact mechanism remains unknown. To determine the mechanism by which glycerolipids impair insulin signaling, we overexpressed glycerol-3-phosphate acyltransferase-1 (GPAT1) in primary mouse hepatocytes. GPAT1 overexpression impaired insulin-stimulated phosphorylation of Akt-S473 and -T308, diminished insulin-suppression of glucose production, significantly inhibited mTOR complex 2 (mTORC2) activity and decreased the association of mTOR and rictor. Conversely, in hepatocytes from Gpat1(-/-) mice, mTOR-rictor association and mTORC2 activity were enhanced. However, this increase in mTORC2 activity in Gpat1(-/-) hepatocytes was ablated when rictor was knocked down. To determine which lipid intermediate was responsible for inactivating mTORC2, we overexpressed GPAT1, AGPAT, or lipin to increase the cellular content of lysophosphatidic acid (LPA), phosphatidic acid (PA), or diacylglycerol (DAG), respectively. The inhibition of mTOR/rictor binding and mTORC2 activity coincided with the levels of PA and DAG species that contained 16:0, the preferred substrate of GPAT1. Furthermore, di-16:0-PA strongly inhibited mTORC2 activity and disassociated mTOR/rictor in vitro. Taken together, these data reveal a signaling pathway by which phosphatidic acid synthesized via the glycerol-3-phosphate pathway inhibits mTORC2 activity by decreasing the association of rictor and mTOR, thereby down-regulating insulin action. These data demonstrate a critical link between nutrient excess, TAG synthesis, and hepatic insulin resistance.

摘要

甘油磷脂合成途径通量的增加会损害胰岛素抑制肝糖异生的能力,但确切的机制尚不清楚。为了确定甘油磷脂损害胰岛素信号的机制,我们在原代小鼠肝细胞中过表达了甘油-3-磷酸酰基转移酶-1(GPAT1)。GPAT1 的过表达会损害胰岛素刺激的 Akt-S473 和 -T308 的磷酸化,降低胰岛素对葡萄糖生成的抑制作用,显著抑制 mTOR 复合物 2(mTORC2)的活性,并减少 mTOR 和rictor 的结合。相反,在 Gpat1(-/-) 小鼠的肝细胞中,mTOR-rictor 结合和 mTORC2 活性增强。然而,当敲低 rictor 时,Gpat1(-/-) 肝细胞中 mTORC2 活性的增加被消除。为了确定哪种脂质中间体能使 mTORC2 失活,我们过表达了 GPAT1、AGPAT 或 lipin,分别增加了溶血磷脂酸(LPA)、磷脂酸(PA)或二酰基甘油(DAG)的细胞含量。mTOR/rictor 结合和 mTORC2 活性的抑制与含有 16:0 的 PA 和 DAG 物质的水平一致,16:0 是 GPAT1 的首选底物。此外,二-16:0-PA 强烈抑制 mTORC2 活性并在体外使 mTOR/rictor 解偶联。综上所述,这些数据揭示了一条信号通路,即通过甘油-3-磷酸途径合成的磷脂酸通过降低 rictor 和 mTOR 的结合来抑制 mTORC2 活性,从而下调胰岛素作用。这些数据表明,营养过剩、TAG 合成和肝胰岛素抵抗之间存在着关键联系。

相似文献

1
Glycerolipid signals alter mTOR complex 2 (mTORC2) to diminish insulin signaling.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1667-72. doi: 10.1073/pnas.1110730109. Epub 2012 Jan 17.
2
Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.
Am J Physiol Endocrinol Metab. 2014 Aug 1;307(3):E305-15. doi: 10.1152/ajpendo.00034.2014. Epub 2014 Jun 17.
3
Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol.
J Biol Chem. 2015 Feb 6;290(6):3519-28. doi: 10.1074/jbc.M114.602789. Epub 2014 Dec 15.
4
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c.
Cell Metab. 2012 May 2;15(5):725-38. doi: 10.1016/j.cmet.2012.03.015. Epub 2012 Apr 19.
6
mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells.
J Endocrinol. 2013 Jan 2;216(1):21-9. doi: 10.1530/JOE-12-0351. Print 2013 Jan.
7
mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling.
Mol Cell Biol. 2010 Feb;30(4):908-21. doi: 10.1128/MCB.00601-09. Epub 2009 Dec 7.
8
mTOR complex 2 mediates Akt phosphorylation that requires PKCε in adult cardiac muscle cells.
Cell Signal. 2013 Sep;25(9):1904-12. doi: 10.1016/j.cellsig.2013.05.001. Epub 2013 May 11.
9
Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling.
J Biol Chem. 2014 Sep 12;289(37):25925-35. doi: 10.1074/jbc.M114.567628. Epub 2014 Jul 25.

引用本文的文献

2
GPAT1 Activity and Abundant Palmitic Acid Impair Insulin Suppression of Hepatic Glucose Production in Primary Mouse Hepatocytes.
J Nutr. 2024 Apr;154(4):1109-1118. doi: 10.1016/j.tjnut.2024.02.004. Epub 2024 Feb 13.
3
4
MAIT cell inhibition promotes liver fibrosis regression via macrophage phenotype reprogramming.
Nat Commun. 2023 Apr 1;14(1):1830. doi: 10.1038/s41467-023-37453-5.
5
Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy.
Cancers (Basel). 2022 Nov 10;14(22):5520. doi: 10.3390/cancers14225520.
8
Lipid Metabolism in Cancer: The Role of Acylglycerolphosphate Acyltransferases (AGPATs).
Cancers (Basel). 2022 Jan 4;14(1):228. doi: 10.3390/cancers14010228.
9
New Insights Into Mitochondrial Dysfunction at Disease Susceptibility Loci in the Development of Type 2 Diabetes.
Front Endocrinol (Lausanne). 2021 Aug 11;12:694893. doi: 10.3389/fendo.2021.694893. eCollection 2021.
10
Optical Control of Phosphatidic Acid Signaling.
ACS Cent Sci. 2021 Jul 28;7(7):1205-1215. doi: 10.1021/acscentsci.1c00444. Epub 2021 Jul 14.

本文引用的文献

1
Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease.
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16381-5. doi: 10.1073/pnas.1113359108. Epub 2011 Sep 19.
2
Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1).
J Biol Chem. 2011 Jul 22;286(29):25477-86. doi: 10.1074/jbc.M111.249631. Epub 2011 May 28.
3
Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5748-52. doi: 10.1073/pnas.1103451108. Epub 2011 Mar 21.
4
Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models.
Antioxid Redox Signal. 2011 Feb 15;14(4):649-61. doi: 10.1089/ars.2010.3370. Epub 2010 Sep 16.
5
Lipid-induced insulin resistance: unravelling the mechanism.
Lancet. 2010 Jun 26;375(9733):2267-77. doi: 10.1016/S0140-6736(10)60408-4.
7
Acyl-CoA synthesis, lipid metabolism and lipotoxicity.
Biochim Biophys Acta. 2010 Mar;1801(3):246-51. doi: 10.1016/j.bbalip.2009.09.024. Epub 2009 Oct 8.
8
Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin.
Mol Cell Biol. 2009 Mar;29(6):1411-20. doi: 10.1128/MCB.00782-08. Epub 2008 Dec 29.
9
S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-(alpha) signaling through IKK2.
J Biol Chem. 2008 Dec 19;283(51):35375-82. doi: 10.1074/jbc.M806480200. Epub 2008 Oct 24.
10
Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2.
J Biol Chem. 2008 Dec 12;283(50):34495-9. doi: 10.1074/jbc.C800170200. Epub 2008 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验