Suppr超能文献

N 端在决定大肠杆菌 Ni 和 Co 响应型金属调控因子 RcnR 的金属特异性反应中的作用。

Role of the N-terminus in determining metal-specific responses in the E. coli Ni- and Co-responsive metalloregulator, RcnR.

机构信息

Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.

出版信息

J Am Chem Soc. 2012 Apr 25;134(16):7081-93. doi: 10.1021/ja300834b. Epub 2012 Apr 11.

Abstract

RcnR (resistance to cobalt and nickel regulator) is a 40-kDa homotetrameric protein and metalloregulator that controls the transcription of the Co(II) and Ni(II) exporter, RcnAB, by binding to DNA as an apoprotein and releasing DNA in response to specifically binding Co(II) and Ni(II) ions. Using X-ray absorption spectroscopy (XAS) to examine the structure of metals bound and lacZ reporter assays of the transcription of RcnA in response to metal binding, in WT and mutant proteins, the roles of coordination number, ligand selection, and residues in the N-terminus of the protein were examined as determinants in metal ion recognition. The studies show that the cognate metal ions, Co(II) and Ni(II), which bind in (N/O)(5)S six-coordinate sites, are distinguished from non-cognate metal ions (Cu(I) and Zn(II)), which bind only three protein ligands and one anion from the buffer, by coordination number and ligand selection. Using mutations of residues near the N-terminus, the N-terminal amine is shown to be a ligand of the cognate metal ions that is missing in the complexes with non-cognate metal ions. The side chain of His3 is also shown to play an important role in distinguishing metal ions. The imidazole group is shown to be a ligand in the Co(II) RcnR complex, but not in the Zn(II) complex. Further, His3 does not appear to bind to Ni(II), providing a structural basis for the differential regulation of RcnAB by the two cognate ions. The Zn(II) complexes change coordination number in response to the residue in position three. In H3C-RcnR, the Zn(II) complex is five-coordinate, and in H3E-RcnR the Zn(II) ion is bound to six protein ligands. The metric parameters of this unusual Zn(II) structure resemble those of the WT-Ni(II) complex, and the mutant protein is able to regulate expression of RcnAB in response to binding the non-cognate ion. The results are discussed within a protein allosteric model for gene regulation by metalloregulators.

摘要

RcnR(钴和镍调节剂抗性)是一种 40kDa 的同源四聚体蛋白和金属调节剂,通过作为无蛋白结合 DNA 并响应特定结合 Co(II)和 Ni(II)离子释放 DNA来控制 Co(II)和 Ni(II)出口器 RcnAB 的转录。使用 X 射线吸收光谱(XAS)检查结合金属的结构以及金属结合时 WT 和突变蛋白中 RcnA 转录的 lacZ 报告基因测定,研究了配位数、配体选择以及蛋白质 N 末端残基在金属离子识别中的作用。研究表明,与非配位金属离子(Cu(I)和 Zn(II))相比,结合(N/O)(5)S 六配位位点的同源金属离子 Co(II)和 Ni(II)通过配位数和配体选择来区分。使用靠近 N 末端的残基突变,表明 N 末端胺是配位金属离子的配体,而在与非配位金属离子的配合物中缺失。还表明 His3 的侧链在区分金属离子方面也起着重要作用。表明咪唑基团是 Co(II)RcnR 配合物中的配体,但不是 Zn(II)配合物中的配体。此外,His3 似乎不与 Ni(II)结合,为两种同源离子对 RcnAB 的差异调节提供了结构基础。Zn(II)配合物响应位置三的残基改变配位数。在 H3C-RcnR 中,Zn(II)配合物是五配位的,而在 H3E-RcnR 中,Zn(II)离子与六个蛋白质配体结合。这种不寻常的 Zn(II)结构的度量参数与 WT-Ni(II)配合物的相似,并且突变蛋白能够响应结合非配位离子来调节 RcnAB 的表达。结果在金属调节剂基因调控的蛋白质变构模型内进行了讨论。

相似文献

1
Role of the N-terminus in determining metal-specific responses in the E. coli Ni- and Co-responsive metalloregulator, RcnR.
J Am Chem Soc. 2012 Apr 25;134(16):7081-93. doi: 10.1021/ja300834b. Epub 2012 Apr 11.
2
Effects of select histidine to cysteine mutations on transcriptional regulation by Escherichia coli RcnR.
Biochemistry. 2013 Jan 8;52(1):84-97. doi: 10.1021/bi300886q. Epub 2012 Dec 24.
3
Glutamate Ligation in the Ni(II)- and Co(II)-Responsive Escherichia coli Transcriptional Regulator, RcnR.
Inorg Chem. 2017 Jun 5;56(11):6459-6476. doi: 10.1021/acs.inorgchem.7b00527. Epub 2017 May 18.
4
Ni(II) Sensing by RcnR Does Not Require an FrmR-Like Intersubunit Linkage.
Inorg Chem. 2019 Oct 21;58(20):13639-13653. doi: 10.1021/acs.inorgchem.9b01096. Epub 2019 Jun 17.
6
Ni(II) and Co(II) sensing by Escherichia coli RcnR.
J Am Chem Soc. 2008 Jun 18;130(24):7592-606. doi: 10.1021/ja710067d. Epub 2008 May 28.
7
Nickel-specific response in the transcriptional regulator, Escherichia coli NikR.
J Am Chem Soc. 2007 Apr 25;129(16):5085-95. doi: 10.1021/ja068505y. Epub 2007 Mar 31.
8
Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells.
J Biol Chem. 2015 Aug 7;290(32):19806-22. doi: 10.1074/jbc.M115.663427. Epub 2015 Jun 24.
10
Mycobacterium tuberculosis NmtR harbors a nickel sensing site with parallels to Escherichia coli RcnR.
Biochemistry. 2011 Sep 20;50(37):7941-52. doi: 10.1021/bi200737a. Epub 2011 Aug 26.

引用本文的文献

1
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
2
Nickel Metalloregulators and Chaperones.
Inorganics (Basel). 2019 Aug;7(8). doi: 10.3390/inorganics7080104. Epub 2019 Aug 19.
3
Complexation of the nickel and cobalt transcriptional regulator RcnR with DNA.
Acta Crystallogr F Struct Biol Commun. 2020 Jan 1;76(Pt 1):25-30. doi: 10.1107/S2053230X19017084.
4
The Electronic Structure of the Metal Active Site Determines the Geometric Structure and Function of the Metalloregulator NikR.
Biochemistry. 2019 Aug 27;58(34):3585-3591. doi: 10.1021/acs.biochem.9b00542. Epub 2019 Aug 14.
5
The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase.
Inorg Chem. 2018 Oct 15;57(20):12521-12535. doi: 10.1021/acs.inorgchem.8b01499. Epub 2018 Oct 3.
7
An XAS investigation of the nickel site structure in the transcriptional regulator InrS.
J Inorg Biochem. 2017 Dec;177:352-358. doi: 10.1016/j.jinorgbio.2017.08.003. Epub 2017 Aug 10.
8
Glutamate Ligation in the Ni(II)- and Co(II)-Responsive Escherichia coli Transcriptional Regulator, RcnR.
Inorg Chem. 2017 Jun 5;56(11):6459-6476. doi: 10.1021/acs.inorgchem.7b00527. Epub 2017 May 18.
9
Metallochaperones and metalloregulation in bacteria.
Essays Biochem. 2017 May 9;61(2):177-200. doi: 10.1042/EBC20160076.
10
Nickel Ligation of the N-Terminal Amine of HypA Is Required for Urease Maturation in Helicobacter pylori.
Biochemistry. 2017 Feb 28;56(8):1105-1116. doi: 10.1021/acs.biochem.6b00912. Epub 2017 Feb 17.

本文引用的文献

1
Computational Study of the DNA-Binding Protein Helicobacter pylori NikR: The Role of Ni(2.).
J Chem Theory Comput. 2010 Nov 9;6(11):3503-15. doi: 10.1021/ct900635z. Epub 2010 Oct 21.
2
Mycobacterium tuberculosis NmtR harbors a nickel sensing site with parallels to Escherichia coli RcnR.
Biochemistry. 2011 Sep 20;50(37):7941-52. doi: 10.1021/bi200737a. Epub 2011 Aug 26.
3
Mechanisms of nickel toxicity in microorganisms.
Metallomics. 2011 Nov;3(11):1153-62. doi: 10.1039/c1mt00063b. Epub 2011 Jul 28.
4
Holo-Ni2+ Helicobacter pylori NikR contains four square-planar nickel-binding sites at physiological pH.
Dalton Trans. 2011 Aug 21;40(31):7831-3. doi: 10.1039/c1dt11107h. Epub 2011 Jul 4.
5
RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli.
J Bacteriol. 2011 Aug;193(15):3785-93. doi: 10.1128/JB.05032-11. Epub 2011 Jun 10.
6
Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8.
Microbiology (Reading). 2010 Jul;156(Pt 7):1993-2005. doi: 10.1099/mic.0.037382-0. Epub 2010 Apr 15.
8
Coordination chemistry of bacterial metal transport and sensing.
Chem Rev. 2009 Oct;109(10):4644-81. doi: 10.1021/cr900077w.
9
DNA recognition and wrapping by Escherichia coli RcnR.
J Mol Biol. 2009 Oct 23;393(2):514-26. doi: 10.1016/j.jmb.2009.08.038. Epub 2009 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验