Suppr超能文献

两种宿主范围不同的微小隐孢子虫分离株的比较基因组分析。

Comparative genome analysis of two Cryptosporidium parvum isolates with different host range.

机构信息

Tufts Cummings School of Veterinary Medicine, Division of Infectious Diseases, North Grafton, MA 01536, USA.

出版信息

Infect Genet Evol. 2012 Aug;12(6):1213-21. doi: 10.1016/j.meegid.2012.03.027. Epub 2012 Apr 12.

Abstract

Parasites of the genus Cryptosporidium infect the intestinal and gastric epithelium of different vertebrate species. Some of the many Cryptosporidium species described to date differ with respect to host range; whereas some species' host range appears to be narrow, others have been isolated from taxonomically unrelated vertebrates. To begin to investigate the genetic basis of Cryptosporidium host specificity, the genome of a Cryptosporidium parvum isolate belonging to a sub-specific group found exclusively in humans was sequenced and compared to the reference C. parvum genome representative of the zoonotic group. Over 12,000 single-nucleotide polymorphisms (SNPs), or 1.4 SNP per kilobase, were identified. The genome distribution of SNPs was highly heterogeneous, but non-synonymous and silent SNPs were similarly distributed. On many chromosomes, the most highly divergent regions were located near the ends. Genes in the most diverged regions were almost twice as large as the genome-wide average. Transporters, and ABC transporters in particular, were over-represented among these genes, as were proteins with predicted signal peptide. Possibly reflecting the presence of regulatory sequences, the distribution of intergenic SNPs differed according to the function of the downstream open reading frame. A 3-way comparison of the newly sequenced anthroponotic C. parvum, the reference zoonotic C. parvum and the human parasite Cryptosporidium hominis identified genetic loci where the anthroponotic C. parvum sequence is more similar to C. hominis than to the zoonotic C. parvum reference. Because C. hominis and anthroponotic C. parvum share a similar host range, this unexpected observation suggests that proteins encoded by these genes may influence the host range.

摘要

隐孢子虫属的寄生虫感染不同脊椎动物物种的肠和胃上皮。迄今为止描述的许多隐孢子虫物种在宿主范围上存在差异;而一些物种的宿主范围似乎很窄,另一些则从分类上无关的脊椎动物中分离出来。为了开始研究隐孢子虫宿主特异性的遗传基础,对一种仅存在于人类中的亚特异性组的隐孢子虫小孢子虫分离株的基因组进行了测序,并与代表动物源性组的参考隐孢子虫小孢子虫基因组进行了比较。鉴定出超过 12000 个单核苷酸多态性(SNP),即每千碱基 1.4 SNP。SNP 的基因组分布高度不均匀,但非同义 SNP 和沉默 SNP 的分布相似。在许多染色体上,最具差异的区域位于末端附近。在最具差异的区域中,基因的大小几乎是全基因组平均大小的两倍。转运蛋白,尤其是 ABC 转运蛋白,在这些基因中过度表达,具有预测信号肽的蛋白质也是如此。可能反映了调控序列的存在,基因间 SNP 的分布根据下游开放阅读框的功能而不同。对新测序的人源隐孢子虫、参考动物源性隐孢子虫和人类寄生虫隐孢子虫 hominis 进行的 3 种比较,确定了遗传基因座,在这些基因座中,人源隐孢子虫序列与隐孢子虫 hominis 的相似性大于与动物源性隐孢子虫参考序列的相似性。由于隐孢子虫 hominis 和人源隐孢子虫具有相似的宿主范围,这一意外观察结果表明,这些基因编码的蛋白质可能影响宿主范围。

相似文献

1
Comparative genome analysis of two Cryptosporidium parvum isolates with different host range.
Infect Genet Evol. 2012 Aug;12(6):1213-21. doi: 10.1016/j.meegid.2012.03.027. Epub 2012 Apr 12.
3
Differential evolution of repetitive sequences in Cryptosporidium parvum and Cryptosporidium hominis.
Infect Genet Evol. 2006 Mar;6(2):113-22. doi: 10.1016/j.meegid.2005.02.002. Epub 2005 Mar 17.
4
Population structure of natural and propagated isolates of Cryptosporidium parvum, C. hominis and C. meleagridis.
Environ Microbiol. 2015 Apr;17(4):984-93. doi: 10.1111/1462-2920.12447. Epub 2014 Apr 2.
5
Molecular characterization of Cryptosporidium isolates from human and bovine using 18s rRNA gene in Shahriar county of Tehran, Iran.
Parasitol Res. 2008 Jul;103(2):467-72. doi: 10.1007/s00436-008-1008-2. Epub 2008 May 15.
6
Cryptosporidium hominis infections in non-human animal species: revisiting the concept of host specificity.
Int J Parasitol. 2020 Apr;50(4):253-262. doi: 10.1016/j.ijpara.2020.01.005. Epub 2020 Mar 20.
8
Evolutionary genomics of anthroponosis in Cryptosporidium.
Nat Microbiol. 2019 May;4(5):826-836. doi: 10.1038/s41564-019-0377-x. Epub 2019 Mar 4.
9
Evidence supporting zoonotic transmission of Cryptosporidium in rural New South Wales.
Exp Parasitol. 2008 May;119(1):192-5. doi: 10.1016/j.exppara.2008.01.010. Epub 2008 Feb 2.
10
Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin.
J Clin Microbiol. 2006 Dec;44(12):4303-8. doi: 10.1128/JCM.01067-06. Epub 2006 Sep 27.

引用本文的文献

1
Impact of predicted microbiota tryptophanase activity on Cryptosporidium parvum proliferation.
PLoS One. 2025 Jun 13;20(6):e0324042. doi: 10.1371/journal.pone.0324042. eCollection 2025.
2
Involvement of a variant secretory protein in virulence of emerging subtypes.
Virulence. 2025 Dec;16(1):2514077. doi: 10.1080/21505594.2025.2514077. Epub 2025 Jun 4.
3
Fecal microbiota impacts development of Cryptosporidium parvum in the mouse.
Sci Rep. 2024 Mar 6;14(1):5498. doi: 10.1038/s41598-024-56184-1.
6
High subtelomeric GC content in the genome of a zoonotic species.
Microb Genom. 2023 Jul;9(7). doi: 10.1099/mgen.0.001052.
7
An update on biology and therapeutic avenues.
J Parasit Dis. 2022 Sep;46(3):923-939. doi: 10.1007/s12639-022-01510-5. Epub 2022 Jun 22.
8
Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research.
Front Cell Infect Microbiol. 2022 Jun 6;12:900878. doi: 10.3389/fcimb.2022.900878. eCollection 2022.
9
Fully resolved assembly of Cryptosporidium parvum.
Gigascience. 2022 Feb 15;11. doi: 10.1093/gigascience/giac010.
10
Comparative genomic analysis of the principal species that infect humans.
PeerJ. 2020 Dec 2;8:e10478. doi: 10.7717/peerj.10478. eCollection 2020.

本文引用的文献

2
Comparison of single- and multilocus genetic diversity in the protozoan parasites Cryptosporidium parvum and C. hominis.
Appl Environ Microbiol. 2010 Oct;76(19):6639-44. doi: 10.1128/AEM.01268-10. Epub 2010 Aug 13.
3
Cryptosporidium ubiquitum n. sp. in animals and humans.
Vet Parasitol. 2010 Aug 27;172(1-2):23-32. doi: 10.1016/j.vetpar.2010.04.028. Epub 2010 Apr 28.
6
Meta-analysis of a polymorphic surface glycoprotein of the parasitic protozoa Cryptosporidium parvum and Cryptosporidium hominis.
Epidemiol Infect. 2009 Dec;137(12):1800-8. doi: 10.1017/S0950268809990215. Epub 2009 Jun 16.
7
Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis.
Plant J. 2009 Sep;59(6):987-1000. doi: 10.1111/j.1365-313X.2009.03928.x. Epub 2009 May 18.
8
The population genetics of dN/dS.
PLoS Genet. 2008 Dec;4(12):e1000304. doi: 10.1371/journal.pgen.1000304. Epub 2008 Dec 12.
9
Molecular basis of Cryptosporidium-host cell interactions: recent advances and future prospects.
Future Microbiol. 2006 Aug;1(2):201-8. doi: 10.2217/17460913.1.2.201.
10
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Mol Biol Evol. 2007 Aug;24(8):1596-9. doi: 10.1093/molbev/msm092. Epub 2007 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验