Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8091-6. doi: 10.1073/pnas.1201010109. Epub 2012 May 9.
DNA base excision repair is essential for maintaining genomic integrity and for active DNA demethylation, a central element of epigenetic regulation. A key player is thymine DNA glycosylase (TDG), which excises thymine from mutagenic G·T mispairs that arise by deamination of 5-methylcytosine (mC). TDG also removes 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC produced by Tet enzymes. Recent studies show that the glycosylase activity of TDG is essential for active DNA demethylation and for embryonic development. Our understanding of how repair enzymes excise modified bases without acting on undamaged DNA remains incomplete, particularly for mismatch glycosylases such as TDG. We solved a crystal structure of TDG (catalytic domain) bound to a substrate analog and characterized active-site residues by mutagenesis, kinetics, and molecular dynamics simulations. The studies reveal how TDG binds and positions the nucleophile (water) and uncover a previously unrecognized catalytic residue (Thr197). Remarkably, mutation of two active-site residues (Ala145 and His151) causes a dramatic enhancement in G·T glycosylase activity but confers even greater increases in the aberrant removal of thymine from normal A·T base pairs. The strict conservation of these residues may reflect a mechanism used to strike a tolerable balance between the requirement for efficient repair of G·T lesions and the need to minimize aberrant action on undamaged DNA, which can be mutagenic and cytotoxic. Such a compromise in G·T activity can account in part for the relatively weak G·T activity of TDG, a trait that could potentially contribute to the hypermutability of CpG sites in cancer and genetic disease.
DNA 碱基切除修复对于维持基因组完整性和主动 DNA 去甲基化至关重要,而主动 DNA 去甲基化是表观遗传调控的核心元素。关键参与者是胸腺嘧啶 DNA 糖基化酶 (TDG),它可以从由 5-甲基胞嘧啶 (mC) 脱氨产生的诱变 G·T 错配中切除胸腺嘧啶。TDG 还可以去除 5-甲酰胞嘧啶和 5-羧基胞嘧啶,这是 Tet 酶产生的 mC 的氧化形式。最近的研究表明,TDG 的糖苷酶活性对于主动 DNA 去甲基化和胚胎发育至关重要。我们对修复酶如何在不作用于未受损 DNA 的情况下切除修饰碱基的理解仍然不完整,特别是对于 TDG 等错配糖苷酶。我们解决了 TDG(催化结构域)与底物类似物结合的晶体结构,并通过突变、动力学和分子动力学模拟对活性位点残基进行了表征。这些研究揭示了 TDG 如何结合并定位亲核试剂(水),并发现了一个以前未被识别的催化残基(Thr197)。值得注意的是,两个活性位点残基(Ala145 和 His151)的突变导致 G·T 糖苷酶活性显著增强,但赋予了从正常 A·T 碱基对中异常去除胸腺嘧啶的更大增加。这些残基的严格保守性可能反映了一种机制,该机制在有效修复 G·T 损伤的要求和尽量减少对未受损 DNA 的异常作用之间达成了可容忍的平衡,这种作用可能会导致突变和细胞毒性。这种 G·T 活性的妥协部分解释了 TDG 相对较弱的 G·T 活性,这一特性可能有助于癌症和遗传疾病中 CpG 位点的高突变性。