Suppr超能文献

修复酶对损伤的处理受到严重限制,因为需要这些残基来防止在未受损的 DNA 上出现异常活性。

Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA.

机构信息

Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 May 22;109(21):8091-6. doi: 10.1073/pnas.1201010109. Epub 2012 May 9.

Abstract

DNA base excision repair is essential for maintaining genomic integrity and for active DNA demethylation, a central element of epigenetic regulation. A key player is thymine DNA glycosylase (TDG), which excises thymine from mutagenic G·T mispairs that arise by deamination of 5-methylcytosine (mC). TDG also removes 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC produced by Tet enzymes. Recent studies show that the glycosylase activity of TDG is essential for active DNA demethylation and for embryonic development. Our understanding of how repair enzymes excise modified bases without acting on undamaged DNA remains incomplete, particularly for mismatch glycosylases such as TDG. We solved a crystal structure of TDG (catalytic domain) bound to a substrate analog and characterized active-site residues by mutagenesis, kinetics, and molecular dynamics simulations. The studies reveal how TDG binds and positions the nucleophile (water) and uncover a previously unrecognized catalytic residue (Thr197). Remarkably, mutation of two active-site residues (Ala145 and His151) causes a dramatic enhancement in G·T glycosylase activity but confers even greater increases in the aberrant removal of thymine from normal A·T base pairs. The strict conservation of these residues may reflect a mechanism used to strike a tolerable balance between the requirement for efficient repair of G·T lesions and the need to minimize aberrant action on undamaged DNA, which can be mutagenic and cytotoxic. Such a compromise in G·T activity can account in part for the relatively weak G·T activity of TDG, a trait that could potentially contribute to the hypermutability of CpG sites in cancer and genetic disease.

摘要

DNA 碱基切除修复对于维持基因组完整性和主动 DNA 去甲基化至关重要,而主动 DNA 去甲基化是表观遗传调控的核心元素。关键参与者是胸腺嘧啶 DNA 糖基化酶 (TDG),它可以从由 5-甲基胞嘧啶 (mC) 脱氨产生的诱变 G·T 错配中切除胸腺嘧啶。TDG 还可以去除 5-甲酰胞嘧啶和 5-羧基胞嘧啶,这是 Tet 酶产生的 mC 的氧化形式。最近的研究表明,TDG 的糖苷酶活性对于主动 DNA 去甲基化和胚胎发育至关重要。我们对修复酶如何在不作用于未受损 DNA 的情况下切除修饰碱基的理解仍然不完整,特别是对于 TDG 等错配糖苷酶。我们解决了 TDG(催化结构域)与底物类似物结合的晶体结构,并通过突变、动力学和分子动力学模拟对活性位点残基进行了表征。这些研究揭示了 TDG 如何结合并定位亲核试剂(水),并发现了一个以前未被识别的催化残基(Thr197)。值得注意的是,两个活性位点残基(Ala145 和 His151)的突变导致 G·T 糖苷酶活性显著增强,但赋予了从正常 A·T 碱基对中异常去除胸腺嘧啶的更大增加。这些残基的严格保守性可能反映了一种机制,该机制在有效修复 G·T 损伤的要求和尽量减少对未受损 DNA 的异常作用之间达成了可容忍的平衡,这种作用可能会导致突变和细胞毒性。这种 G·T 活性的妥协部分解释了 TDG 相对较弱的 G·T 活性,这一特性可能有助于癌症和遗传疾病中 CpG 位点的高突变性。

相似文献

1
Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8091-6. doi: 10.1073/pnas.1201010109. Epub 2012 May 9.
3
Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA.
Nucleic Acids Res. 2015 Oct 30;43(19):9541-52. doi: 10.1093/nar/gkv890. Epub 2015 Sep 10.
4
Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues.
Nucleic Acids Res. 2016 Dec 1;44(21):10248-10258. doi: 10.1093/nar/gkw768. Epub 2016 Aug 31.
7
Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase.
Biochemistry. 2016 Nov 15;55(45):6205-6208. doi: 10.1021/acs.biochem.6b00982. Epub 2016 Nov 2.
8
Stoichiometry and affinity for thymine DNA glycosylase binding to specific and nonspecific DNA.
Nucleic Acids Res. 2011 Mar;39(6):2319-29. doi: 10.1093/nar/gkq1164. Epub 2010 Nov 21.
10
Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA.
J Mol Biol. 2012 Jul 13;420(3):164-75. doi: 10.1016/j.jmb.2012.04.028. Epub 2012 May 2.

引用本文的文献

2
Characterizing the excision of 7,8-dihydro-8-oxoadenine by thymine DNA glycosylase.
J Biol Chem. 2025 Jun 16;301(7):110363. doi: 10.1016/j.jbc.2025.110363.
3
Observing nucleotide flipping in DNA using indirect 2'-F nucleotide probes and 19F NMR.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf492.
4
Enhanced thermal stability enables human mismatch-specific thymine-DNA glycosylase to catalyse futile DNA repair.
PLoS One. 2024 Oct 18;19(10):e0304818. doi: 10.1371/journal.pone.0304818. eCollection 2024.
5
DNA Methyltransferases and DNA Damage.
Adv Exp Med Biol. 2022;1389:349-361. doi: 10.1007/978-3-031-11454-0_14.
6
Computational investigations on target-site searching and recognition mechanisms by thymine DNA glycosylase during DNA repair process.
Acta Biochim Biophys Sin (Shanghai). 2022 May 25;54(6):796-806. doi: 10.3724/abbs.2022050.
7
Kinetics and thermodynamics of BI-BII interconversion altered by T:G mismatches in DNA.
Biophys J. 2022 May 3;121(9):1691-1703. doi: 10.1016/j.bpj.2022.03.031. Epub 2022 Mar 30.
8
Intrinsic Strand-Incision Activity of Human UNG: Implications for Nick Generation in Immunoglobulin Gene Diversification.
Front Immunol. 2021 Dec 22;12:762032. doi: 10.3389/fimmu.2021.762032. eCollection 2021.
9
Insights into the substrate discrimination mechanisms of methyl-CpG-binding domain 4.
Biochem J. 2021 May 28;478(10):1985-1997. doi: 10.1042/BCJ20210017.
10
The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage.
Nucleic Acids Res. 2020 Nov 18;48(20):11227-11243. doi: 10.1093/nar/gkaa777.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA.
Nat Chem Biol. 2012 Feb 12;8(4):328-30. doi: 10.1038/nchembio.914.
3
The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential.
ACS Chem Biol. 2012 Jan 20;7(1):20-30. doi: 10.1021/cb2002895. Epub 2011 Oct 31.
5
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
Science. 2011 Sep 2;333(6047):1303-7. doi: 10.1126/science.1210944. Epub 2011 Aug 4.
6
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
Science. 2011 Sep 2;333(6047):1300-3. doi: 10.1126/science.1210597. Epub 2011 Jul 21.
7
Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair.
Cell. 2011 Jul 8;146(1):67-79. doi: 10.1016/j.cell.2011.06.020. Epub 2011 Jun 30.
8
Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.
Cell. 2011 Apr 29;145(3):423-34. doi: 10.1016/j.cell.2011.03.022. Epub 2011 Apr 14.
10
Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability.
Nature. 2011 Feb 17;470(7334):419-23. doi: 10.1038/nature09672. Epub 2011 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验