Suppr超能文献

C-H 键功能化/Cope 重排反应的组合:在有机合成中的发现和应用。

The combined C-H functionalization/Cope rearrangement: discovery and applications in organic synthesis.

机构信息

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA.

出版信息

Acc Chem Res. 2012 Jun 19;45(6):923-35. doi: 10.1021/ar300013t. Epub 2012 May 11.

Abstract

The development of methods for the stereoselective functionalization of sp(3) C-H bonds is a challenging undertaking. This Account describes the scope of the combined C-H functionalization/Cope rearrangement (CHCR), a reaction that occurs between rhodium-stabilized vinylcarbenoids and substrates containing allylic C-H bonds. Computational studies have shown that the CHCR reaction is initiated by a hydride transfer to the carbenoid from an allyl site on the substrate, which is then rapidly followed by C-C bond formation between the developing rhodium-bound allyl anion and the allyl cation. In principle, the reaction can proceed through four distinct orientations of the vinylcarbenoid and the approaching substrate. The early examples of the CHCR reaction were all highly diastereoselective, consistent with a reaction proceeding via a chair transition state with the vinylcarbenoid adopting an s-cis conformation. Recent computational studies have revealed that other transition state orientations are energetically accessible, and these results have guided the development of highly stereoselective CHCR reactions that proceed through a boat transition state with the vinylcarbenoid in an s-cis configuration. The CHCR reaction has broad applications in organic synthesis. In some new protocols, the CHCR reaction acts as a surrogate to some of the classic synthetic strategies in organic chemistry. The CHCR reaction has served as a synthetic equivalent of the Michael reaction, the vinylogous Mukaiyama aldol reaction, the tandem Claisen rearrangement/Cope rearrangement, and the tandem aldol reaction/siloxy-Cope rearrangement. In all of these cases, the products are generated with very high diastereocontrol. With a chiral dirhodium tetracarboxylate catalyst such as Rh(2)(S-DOSP)(4) or Rh(2)(S-PTAD)(4), researchers can achieve very high levels of asymmetric induction. Applications of the CHCR reaction include the effective enantiodifferentiation of racemic dihydronaphthalenes and the total synthesis of several natural products: (-)-colombiasin A, (-)-elisapterosin B, and (+)-erogorgiaene. By combining the CHCR reaction into a further cascade sequence, we and other researchers have achieved the asymmetric synthesis of 4-substituted indoles, a new class of monoamine reuptake inhibitors.

摘要

sp³C-H 键的立体选择性功能化方法的发展是一项具有挑战性的任务。本综述描述了铑稳定的乙烯型碳烯与含有烯丙基 C-H 键的底物之间发生的协同 C-H 官能化/Cope 重排(CHCR)反应的范围。计算研究表明,CHCR 反应是通过从底物上的烯丙基位置向碳烯转移氢化物引发的,随后迅速在形成的铑键合烯丙基阴离子和烯丙基阳离子之间形成 C-C 键。原则上,反应可以通过乙烯型碳烯和接近的底物的四个不同取向进行。CHCR 反应的早期实例都是高度非对映选择性的,与通过具有乙烯型碳烯采用 s-顺构象的椅式过渡态进行的反应一致。最近的计算研究表明,其他过渡态取向在能量上是可及的,这些结果指导了通过乙烯型碳烯采用 s-顺构象的船过渡态进行的高立体选择性 CHCR 反应的发展。CHCR 反应在有机合成中有广泛的应用。在一些新的方案中,CHCR 反应充当了一些经典有机合成策略的替代物。CHCR 反应已成为迈克尔反应、烯醇式 Mukaiyama 醛缩合反应、串联 Claisen 重排/Cope 重排和串联醛缩合反应/硅氧基-Cope 重排的合成等价物。在所有这些情况下,产物都具有非常高的非对映选择性控制。使用手性二铑四羧酸酯催化剂,如 Rh(2)(S-DOSP)(4)或 Rh(2)(S-PTAD)(4),研究人员可以实现非常高水平的不对称诱导。CHCR 反应的应用包括对映体选择性拆分外消旋二氢萘和几种天然产物的全合成:(-)-colombiasin A、(-)-elisapterosin B 和 (+)-erogorgiaene。通过将 CHCR 反应组合到进一步的级联序列中,我们和其他研究人员已经实现了 4-取代吲哚的不对称合成,这是一类新的单胺再摄取抑制剂。

相似文献

1
The combined C-H functionalization/Cope rearrangement: discovery and applications in organic synthesis.
Acc Chem Res. 2012 Jun 19;45(6):923-35. doi: 10.1021/ar300013t. Epub 2012 May 11.
2
Combined C-H functionalization/Cope rearrangement with vinyl ethers as a surrogate for the vinylogous Mukaiyama aldol reaction.
J Am Chem Soc. 2011 Aug 10;133(31):11940-3. doi: 10.1021/ja2051155. Epub 2011 Jul 18.
3
On the mechanism and selectivity of the combined C-H activation/Cope rearrangement.
J Am Chem Soc. 2011 Apr 6;133(13):5076-85. doi: 10.1021/ja111408v. Epub 2011 Mar 8.
5
Silica-immobilized chiral dirhodium(II) catalyst for enantioselective carbenoid reactions.
Org Lett. 2013 Dec 20;15(24):6136-9. doi: 10.1021/ol403006r. Epub 2013 Nov 19.
7
Rh2(S-biTISP)2-catalyzed asymmetric functionalization of indoles and pyrroles with vinylcarbenoids.
Org Lett. 2012 Apr 6;14(7):1934-7. doi: 10.1021/ol300632p. Epub 2012 Mar 27.
8
D2-symmetric dirhodium catalyst derived from a 1,2,2-triarylcyclopropanecarboxylate ligand: design, synthesis and application.
J Am Chem Soc. 2011 Nov 30;133(47):19198-204. doi: 10.1021/ja2074104. Epub 2011 Nov 2.

引用本文的文献

1
In-situ Kinetic Studies of Rh(II)-Catalyzed C-H Functionalization to Achieve High Catalyst Turnover Numbers.
ACS Catal. 2022 Nov 4;12(21):13400-13410. doi: 10.1021/acscatal.2c04115. Epub 2022 Oct 18.
2
Iodide-enhanced palladium catalysis via formation of iodide-bridged binuclear palladium complex.
Commun Chem. 2020 Mar 31;3(1):41. doi: 10.1038/s42004-020-0287-0.
3
Chiral Bismuth-Rhodium Paddlewheel Complexes Empowered by London Dispersion: The C-H Functionalization Nexus.
Angew Chem Int Ed Engl. 2022 Nov 7;61(45):e202212546. doi: 10.1002/anie.202212546. Epub 2022 Oct 11.
4
A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth-Rhodium Paddlewheel Catalysts.
J Am Chem Soc. 2021 Apr 21;143(15):5666-5673. doi: 10.1021/jacs.1c01972. Epub 2021 Apr 8.
5
Aromatic Cope rearrangements.
Org Biomol Chem. 2021 Mar 21;19(11):2385-2398. doi: 10.1039/d1ob00094b. Epub 2021 Mar 2.
6
Enantioselective Catalysis of an Anionic Oxy-Cope Rearrangement Enabled by Synergistic Ion Binding.
Isr J Chem. 2020 Mar;60(3-4):461-474. doi: 10.1002/ijch.201900168. Epub 2020 Mar 6.
7
Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization.
Nat Rev Chem. 2019 Jun;3(6):347-360. doi: 10.1038/s41570-019-0099-x. Epub 2019 May 7.
9
Bis(imino)pyridine iron complexes for catalytic carbene transfer reactions.
Chem Sci. 2019 Jul 2;10(34):7958-7963. doi: 10.1039/c9sc02189b. eCollection 2019 Sep 14.
10
A Carbene-Extended ATRA Reaction.
Angew Chem Int Ed Engl. 2019 Nov 25;58(48):17241-17245. doi: 10.1002/anie.201909872. Epub 2019 Oct 15.

本文引用的文献

3
Computationally guided stereocontrol of the combined C-H functionalization/Cope rearrangement.
Angew Chem Int Ed Engl. 2011 Sep 26;50(40):9370-3. doi: 10.1002/anie.201103568. Epub 2011 Aug 30.
4
Asymmeric formal [3 + 3]-cycloaddition reactions of nitrones with electrophilic vinylcarbene intermediates.
J Am Chem Soc. 2011 Oct 19;133(41):16402-5. doi: 10.1021/ja207664r. Epub 2011 Sep 27.
5
Rapid access to α-alkoxy and α-amino acid derivatives through safe continuous-flow generation of diazoesters.
Chemistry. 2011 Aug 22;17(35):9586-9. doi: 10.1002/chem.201101590. Epub 2011 Jul 27.
6
Enantioselective C-H carbene insertions with homogeneous and immobilized copper complexes.
Org Biomol Chem. 2011 Sep 7;9(17):6075-81. doi: 10.1039/c1ob05499f. Epub 2011 Jul 13.
7
Combined C-H functionalization/Cope rearrangement with vinyl ethers as a surrogate for the vinylogous Mukaiyama aldol reaction.
J Am Chem Soc. 2011 Aug 10;133(31):11940-3. doi: 10.1021/ja2051155. Epub 2011 Jul 18.
8
Diastereoselectively switchable enantioselective trapping of carbamate ammonium ylides with imines.
J Am Chem Soc. 2011 Jun 8;133(22):8428-31. doi: 10.1021/ja201589k. Epub 2011 May 16.
9
Metal-catalyzed oxidations of C-H to C-N bonds.
Top Curr Chem. 2010;292:347-78. doi: 10.1007/128_2009_19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验