Suppr超能文献

MerR 样转录调控因子 BrlR 有助于铜绿假单胞菌生物膜耐受。

The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance.

机构信息

Department of Biological Sciences, Binghamton University, Binghamton, New York, USA.

出版信息

J Bacteriol. 2012 Sep;194(18):4823-36. doi: 10.1128/JB.00765-12. Epub 2012 Jun 22.

Abstract

Biofilms are composed of surface-attached microbial communities. A hallmark of biofilms is their profound tolerance of antimicrobial agents. While biofilm drug tolerance has been considered to be multifactorial, our findings indicate, instead, that bacteria within biofilms employ a classical regulatory mechanism to resist the action of antimicrobial agents. Here we report that the transcriptional regulator BrlR, a member of the MerR family of multidrug transport activators, plays a role in the high-level drug tolerance of biofilms formed by Pseudomonas aeruginosa. Expression of brlR was found to be biofilm specific, with brlR inactivation not affecting biofilm formation, motility, or pslA expression but increasing ndvB expression. Inactivation of brlR rendered biofilms but not planktonic cells grown to exponential or stationary phase significantly more susceptible to hydrogen peroxide and five different classes of antibiotics by affecting the MICs and the recalcitrance of biofilms to killing by microbicidal antimicrobial agents. In contrast, overexpression of brlR rendered both biofilms and planktonic cells more tolerant to the same compounds. brlR expression in three cystic fibrosis (CF) isolates was elevated regardless of the mode of growth, suggesting a selection for constitutive brlR expression upon in vivo biofilm formation associated with chronic infections. Despite increased brlR expression, however, isolate CF1-8 was as susceptible to tobramycin as was a ΔbrlR mutant because of a nonsense mutation in brlR. Our results indicate for the first time that biofilms employ a specific regulatory mechanism to resist the action of antimicrobial agents in a BrlR-dependent manner which affects MIC and recalcitrance to killing by microbicidal antimicrobial agents.

摘要

生物膜由附着在表面的微生物群落组成。生物膜的一个特点是对抗菌剂有很强的耐受性。虽然生物膜的药物耐受性被认为是多因素的,但我们的研究结果表明,生物膜内的细菌实际上采用了一种经典的调节机制来抵抗抗菌剂的作用。在这里,我们报告转录调节因子 BrlR,一种多药运输激活剂 MerR 家族的成员,在铜绿假单胞菌形成的生物膜的高水平药物耐受性中发挥作用。发现 brlR 的表达是生物膜特异性的,brlR 失活不会影响生物膜的形成、运动或 pslA 的表达,但会增加 ndvB 的表达。brlR 的失活使生物膜而不是处于指数或静止期生长的浮游细胞对过氧化氢和五类不同的抗生素更加敏感,这影响了 MIC 和生物膜对杀菌性抗菌剂杀伤的抵抗力。相比之下,brlR 的过表达使生物膜和浮游细胞对相同的化合物更耐受。在三个囊性纤维化 (CF) 分离株中,brlR 的表达升高,无论生长方式如何,这表明在与慢性感染相关的体内生物膜形成过程中,brlR 的组成型表达是一种选择。然而,尽管 brlR 的表达增加,CF1-8 分离株对妥布霉素的敏感性与 ΔbrlR 突变体一样,因为 brlR 中有一个无意义突变。我们的研究结果首次表明,生物膜采用特定的调节机制以 BrlR 依赖的方式抵抗抗菌剂的作用,这影响 MIC 和杀菌性抗菌剂杀伤的抵抗力。

相似文献

1
The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance.
J Bacteriol. 2012 Sep;194(18):4823-36. doi: 10.1128/JB.00765-12. Epub 2012 Jun 22.
5
The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ.
J Bacteriol. 2013 Oct;195(20):4678-88. doi: 10.1128/JB.00834-13. Epub 2013 Aug 9.
7
Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa.
Mol Microbiol. 2014 May;92(3):488-506. doi: 10.1111/mmi.12587. Epub 2014 Apr 9.
9
Pseudomonas aeruginosa Biofilm Antibiotic Resistance Gene Expression Requires the RpoS Stationary-Phase Sigma Factor.
Appl Environ Microbiol. 2018 Mar 19;84(7). doi: 10.1128/AEM.02762-17. Print 2018 Apr 1.

引用本文的文献

1
FleQ finetunes the expression of a subset of BrlR-activated genes to enable antibiotic tolerance by biofilms.
J Bacteriol. 2025 May 22;207(5):e0050324. doi: 10.1128/jb.00503-24. Epub 2025 Apr 30.
2
Distinct transcriptome and traits of freshly dispersed cells.
mSphere. 2024 Dec 19;9(12):e0088424. doi: 10.1128/msphere.00884-24. Epub 2024 Nov 27.
3
Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization.
Annu Rev Microbiol. 2024 Nov;78(1):533-551. doi: 10.1146/annurev-micro-041522-101729. Epub 2024 Nov 7.
4
Oxidative stress responses in biofilms.
Biofilm. 2024 May 23;7:100203. doi: 10.1016/j.bioflm.2024.100203. eCollection 2024 Jun.
7
Simulation of catalase-dependent tolerance of microbial biofilm to hydrogen peroxide with a biofilm computer model.
NPJ Biofilms Microbiomes. 2023 Aug 23;9(1):60. doi: 10.1038/s41522-023-00426-z.
8
Mechanisms of antibiotic resistance in biofilms.
Biofilm. 2023 May 2;5:100129. doi: 10.1016/j.bioflm.2023.100129. eCollection 2023 Dec.
9
MoaB1 Homologs Contribute to Biofilm Formation and Motility by Pseudomonas aeruginosa and Escherichia coli.
J Bacteriol. 2023 May 25;205(5):e0000423. doi: 10.1128/jb.00004-23. Epub 2023 Apr 26.
10
Nigericin is effective against multidrug resistant gram-positive bacteria, persisters, and biofilms.
Front Cell Infect Microbiol. 2022 Dec 20;12:1055929. doi: 10.3389/fcimb.2022.1055929. eCollection 2022.

本文引用的文献

1
Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria.
Science. 2011 Nov 18;334(6058):982-6. doi: 10.1126/science.1211037.
4
Probing prokaryotic social behaviors with bacterial "lobster traps".
mBio. 2010 Oct 12;1(4):e00202-10. doi: 10.1128/mBio.00202-10.
5
Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons.
Environ Microbiol. 2010 Jun;12(6):1719-33. doi: 10.1111/j.1462-2920.2010.02252.x.
6
A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development.
PLoS Pathog. 2009 Nov;5(11):e1000668. doi: 10.1371/journal.ppat.1000668. Epub 2009 Nov 20.
8
Involvement of a novel efflux system in biofilm-specific resistance to antibiotics.
J Bacteriol. 2008 Jul;190(13):4447-52. doi: 10.1128/JB.01655-07. Epub 2008 May 9.
9
Multidrug tolerance of biofilms and persister cells.
Curr Top Microbiol Immunol. 2008;322:107-31. doi: 10.1007/978-3-540-75418-3_6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验