Suppr超能文献

1000 例髓母细胞瘤全基因组亚组特异性结构变异。

Subgroup-specific structural variation across 1,000 medulloblastoma genomes.

机构信息

Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.

出版信息

Nature. 2012 Aug 2;488(7409):49-56. doi: 10.1038/nature11327.

Abstract

Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.

摘要

髓母细胞瘤是最常见的小儿脑恶性肿瘤,目前采用非特异性细胞毒性疗法治疗,包括手术、全脑放疗和强化化疗。由于髓母细胞瘤表现出明显的肿瘤间异质性,至少有四个不同的分子亚型,以前尝试确定治疗靶点的研究因样本量小而收效甚微。在这里,我们报告了 1087 个独特的髓母细胞瘤中的体细胞拷贝数异常(SCNAs)。SCNAs 在髓母细胞瘤中很常见,并且主要富集在亚组中。局灶性拷贝数增益最常见的区域是与帕金森病相关的 SNCAIP 基因的串联重复,该基因在 4α 组中特异性受限。通过染色体重排产生的 PVT1 易位,包括 PVT1-MYC 和 PVT1-NDRG1,局限于 3 组。许多可靶向的 SCNAs,包括 3 组中针对 TGF-β 信号通路和 4 组中针对 NF-κB 信号通路的复发性事件,提示未来有合理靶向治疗的途径。

相似文献

1
Subgroup-specific structural variation across 1,000 medulloblastoma genomes.
Nature. 2012 Aug 2;488(7409):49-56. doi: 10.1038/nature11327.
2
Dissecting the genomic complexity underlying medulloblastoma.
Nature. 2012 Aug 2;488(7409):100-5. doi: 10.1038/nature11284.
3
Medulloblastoma: Molecular Classification-Based Personal Therapeutics.
Neurotherapeutics. 2017 Apr;14(2):265-273. doi: 10.1007/s13311-017-0526-y.
4
Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations.
Nature. 2012 Aug 2;488(7409):106-10. doi: 10.1038/nature11329.
5
Novel mutations target distinct subgroups of medulloblastoma.
Nature. 2012 Aug 2;488(7409):43-8. doi: 10.1038/nature11213.
6
BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma.
PLoS One. 2016 Jun 16;11(6):e0156907. doi: 10.1371/journal.pone.0156907. eCollection 2016.
8
Subgroup-specific prognostic signaling and metabolic pathways in pediatric medulloblastoma.
BMC Cancer. 2019 Jun 11;19(1):571. doi: 10.1186/s12885-019-5742-x.
10
Downregulation of CRX, a Group 3-specific oncogenic transcription factor, inhibits TGF-β/activin signaling in medulloblastoma cells.
Biochem Biophys Res Commun. 2021 Sep 3;568:76-82. doi: 10.1016/j.bbrc.2021.06.064. Epub 2021 Jun 27.

引用本文的文献

1
Small-Molecule Drugs in Pediatric Neuro-Oncology.
Curr Oncol. 2025 Jul 25;32(8):417. doi: 10.3390/curroncol32080417.
2
How is rosette formation in brain tumours linked with cerebrospinal fluid spread?
Brain Tumor Pathol. 2025 Aug 12. doi: 10.1007/s10014-025-00512-4.
3
Of travelling homeoproteins and medulloblastomas.
Oncogene. 2025 Aug 4. doi: 10.1038/s41388-025-03523-9.
4
GABAergic Influences on Medulloblastoma.
Brain Sci. 2025 Jul 11;15(7):746. doi: 10.3390/brainsci15070746.
6
Medulloblastoma: biology and immunotherapy.
Front Immunol. 2025 Jul 3;16:1602930. doi: 10.3389/fimmu.2025.1602930. eCollection 2025.
8
Consistently processed RNA sequencing data from 50 sources enriched for pediatric data.
Sci Data. 2025 Jul 2;12(1):1134. doi: 10.1038/s41597-025-05376-z.
9
Epigenetic modifications and their roles in pediatric brain tumor formation: emerging insights from chromatin dysregulation.
Front Oncol. 2025 Jun 17;15:1569548. doi: 10.3389/fonc.2025.1569548. eCollection 2025.
10
Aberrant histone modifications in pediatric brain tumors.
Front Oncol. 2025 Jun 10;15:1587157. doi: 10.3389/fonc.2025.1587157. eCollection 2025.

本文引用的文献

1
The clinical implications of medulloblastoma subgroups.
Nat Rev Neurol. 2012 May 8;8(6):340-51. doi: 10.1038/nrneurol.2012.78.
2
4
Molecular subgroups of medulloblastoma: the current consensus.
Acta Neuropathol. 2012 Apr;123(4):465-72. doi: 10.1007/s00401-011-0922-z. Epub 2011 Dec 2.
5
Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples.
Acta Neuropathol. 2012 Apr;123(4):615-26. doi: 10.1007/s00401-011-0899-7. Epub 2011 Nov 6.
7
FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma.
J Clin Oncol. 2011 Oct 10;29(29):3852-61. doi: 10.1200/JCO.2011.36.2798. Epub 2011 Sep 12.
8
Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct.
Acta Neuropathol. 2011 Aug;122(2):231-40. doi: 10.1007/s00401-011-0846-7. Epub 2011 Jun 17.
10
The TGF-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors.
Biochim Biophys Acta. 2011 May;1813(5):742-53. doi: 10.1016/j.bbamcr.2011.01.028. Epub 2011 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验