Suppr超能文献

推断转录调控网络中转录因子的调控相互作用模型。

Inferring the regulatory interaction models of transcription factors in transcriptional regulatory networks.

作者信息

Awad Sherine, Panchy Nicholas, Ng See-Kiong, Chen Jin

机构信息

Computer Science and Engineering Department, Michigan State University, East Lansing, MI 48824, USA.

出版信息

J Bioinform Comput Biol. 2012 Oct;10(5):1250012. doi: 10.1142/S0219720012500126. Epub 2012 Jun 26.

Abstract

Living cells are realized by complex gene expression programs that are moderated by regulatory proteins called transcription factors (TFs). The TFs control the differential expression of target genes in the context of transcriptional regulatory networks (TRNs), either individually or in groups. Deciphering the mechanisms of how the TFs control the differential expression of a target gene in a TRN is challenging, especially when multiple TFs collaboratively participate in the transcriptional regulation. To unravel the roles of the TFs in the regulatory networks, we model the underlying regulatory interactions in terms of the TF-target interactions' directions (activation or repression) and their corresponding logical roles (necessary and/or sufficient). We design a set of constraints that relate gene expression patterns to regulatory interaction models, and develop TRIM (Transcriptional Regulatory Interaction Model Inference), a new hidden Markov model, to infer the models of TF-target interactions in large-scale TRNs of complex organisms. Besides, by training TRIM with wild-type time-series gene expression data, the activation timepoints of each regulatory module can be obtained. To demonstrate the advantages of TRIM, we applied it on yeast TRN to infer the TF-target interaction models for individual TFs as well as pairs of TFs in collaborative regulatory modules. By comparing with TF knockout and other gene expression data, we were able to show that the performance of TRIM is clearly higher than DREM (the best existing algorithm). In addition, on an individual Arabidopsis binding network, we showed that the target genes' expression correlations can be significantly improved by incorporating the TF-target regulatory interaction models inferred by TRIM into the expression data analysis, which may introduce new knowledge in transcriptional dynamics and bioactivation.

摘要

活细胞是通过复杂的基因表达程序实现的,这些程序由称为转录因子(TFs)的调节蛋白调控。转录因子在转录调控网络(TRNs)的背景下,单独或成组地控制靶基因的差异表达。解读转录因子如何在转录调控网络中控制靶基因差异表达的机制具有挑战性,尤其是当多个转录因子协同参与转录调控时。为了揭示转录因子在调控网络中的作用,我们根据转录因子与靶标的相互作用方向(激活或抑制)及其相应的逻辑作用(必要和/或充分)对潜在的调控相互作用进行建模。我们设计了一组将基因表达模式与调控相互作用模型相关联的约束条件,并开发了一种新的隐马尔可夫模型TRIM(转录调控相互作用模型推断),以推断复杂生物体大规模转录调控网络中的转录因子与靶标相互作用模型。此外,通过用野生型时间序列基因表达数据训练TRIM,可以获得每个调控模块的激活时间点。为了证明TRIM的优势,我们将其应用于酵母转录调控网络,以推断单个转录因子以及协同调控模块中一对转录因子的转录因子与靶标相互作用模型。通过与转录因子敲除和其他基因表达数据进行比较,我们能够表明TRIM的性能明显高于DREM(现有的最佳算法)。此外,在单个拟南芥结合网络上,我们表明,将TRIM推断的转录因子与靶标调控相互作用模型纳入表达数据分析中,可以显著提高靶基因的表达相关性,这可能会在转录动力学和生物激活方面引入新知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验