Suppr超能文献

具有应用于生态瞬时评估数据的三级混合效应位置尺度模型。

A three-level mixed-effects location scale model with an application to ecological momentary assessment data.

机构信息

VA Cooperative Studies Program Coordinating Center, Hines, IL 60141, U.S.A.

出版信息

Stat Med. 2012 Nov 20;31(26):3192-210. doi: 10.1002/sim.5393. Epub 2012 Aug 3.

Abstract

In studies using ecological momentary assessment (EMA), or other intensive longitudinal data collection methods, interest frequently centers on changes in the variances, both within-subjects and between-subjects. For this, Hedeker et al. (Biometrics 2008; 64: 627-634) developed an extended two-level mixed-effects model that treats observations as being nested within subjects and allows covariates to influence both the within-subjects and between-subjects variance, beyond their influence on means. However, in EMA studies, subjects often provide many responses within and across days. To account for the possible systematic day-to-day variation, we developed a more flexible three-level mixed-effects location scale model that treats observations within days within subjects, and allows covariates to influence the variance at the subject, day, and observation level (over and above their usual effects on means) using a log-linear representation throughout. We provide details of a maximum likelihood solution and demonstrate how SAS PROC NLMIXED can be used to achieve maximum likelihood estimates in an alternative parameterization of our proposed three-level model. The accuracy of this approach using NLMIXED was verified by a series of simulation studies. Data from an adolescent mood study using EMA were analyzed to demonstrate this approach. The analyses clearly show the benefit of the proposed three-level model over the existing two-level approach. The proposed model has useful applications in many studies with three-level structures where interest centers on the joint modeling of the mean and variance structure.

摘要

在使用生态瞬时评估(EMA)或其他密集纵向数据收集方法的研究中,人们通常关注的是个体内和个体间方差的变化。为此,Hedeker 等人(Biometrics 2008;64:627-634)开发了一个扩展的两层混合效应模型,该模型将观测值视为嵌套在个体内,并允许协变量同时影响个体内和个体间方差,超出其对均值的影响。然而,在 EMA 研究中,受试者通常在几天内提供多次反应。为了考虑可能存在的系统日常变化,我们开发了一个更灵活的三层混合效应位置尺度模型,该模型将个体内每天的观测值视为嵌套的,并允许协变量通过对数线性表示来影响个体、天和观测水平上的方差(超出其对均值的通常影响)。我们提供了最大似然解的详细信息,并展示了如何使用 SAS PROC NLMIXED 在我们提出的三层模型的替代参数化中实现最大似然估计。通过一系列模拟研究验证了 NLMIXED 中这种方法的准确性。使用 EMA 进行的青少年情绪研究的数据被分析以展示这种方法。分析清楚地表明了所提出的三层模型相对于现有两层方法的优势。该模型在许多具有三层结构的研究中具有有用的应用,这些研究的重点是联合建模均值和方差结构。

相似文献

1
A three-level mixed-effects location scale model with an application to ecological momentary assessment data.
Stat Med. 2012 Nov 20;31(26):3192-210. doi: 10.1002/sim.5393. Epub 2012 Aug 3.
2
A 3-level Bayesian mixed effects location scale model with an application to ecological momentary assessment data.
Stat Med. 2018 Jun 15;37(13):2108-2119. doi: 10.1002/sim.7627. Epub 2018 Feb 26.
3
An application of a mixed-effects location scale model for analysis of Ecological Momentary Assessment (EMA) data.
Biometrics. 2008 Jun;64(2):627-34. doi: 10.1111/j.1541-0420.2007.00924.x. Epub 2007 Oct 26.
5
A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data.
Stat Interface. 2009;2(4):391-401. doi: 10.4310/sii.2009.v2.n4.a1.
6
Defining R-squared measures for mixed-effects location scale models.
Stat Med. 2022 Sep 30;41(22):4467-4483. doi: 10.1002/sim.9521. Epub 2022 Jul 7.
8
MIXREGLS: A Program for Mixed-Effects Location Scale Analysis.
J Stat Softw. 2013 Mar;52(12):1-38. doi: 10.18637/jss.v052.i12.
10
A Bivariate Mixed-Effects Location-Scale Model with application to Ecological Momentary Assessment (EMA) data.
Health Serv Outcomes Res Methodol. 2014 Dec;14(4):194-212. doi: 10.1007/s10742-014-0126-9.

引用本文的文献

1
Bayesian Hierarchical Modeling for Variance Estimation in Biopharmaceutical Processes.
Bioengineering (Basel). 2025 Feb 17;12(2):193. doi: 10.3390/bioengineering12020193.
2
A Bayesian Approach to Modeling Variance of Intensive Longitudinal Biomarker Data as a Predictor of Health Outcomes.
Stat Med. 2024 Dec 30;43(30):5748-5764. doi: 10.1002/sim.10281. Epub 2024 Nov 14.
3
Detecting influential subjects in intensive longitudinal data using mixed-effects location scale models.
BMC Med Res Methodol. 2023 Oct 18;23(1):237. doi: 10.1186/s12874-023-02046-9.
4
Zero-augmented beta-prime model for multilevel semi-continuous data: a Bayesian inference.
BMC Med Res Methodol. 2022 Nov 2;22(1):283. doi: 10.1186/s12874-022-01736-0.
5
Location-scale models for meta-analysis.
Res Synth Methods. 2022 Nov;13(6):697-715. doi: 10.1002/jrsm.1562. Epub 2022 Apr 27.
6
The Reliability Factor: Modeling Individual Reliability with Multiple Items from a Single Assessment.
Psychometrika. 2022 Dec;87(4):1318-1342. doi: 10.1007/s11336-022-09847-9. Epub 2022 Mar 21.
7
Bayesian Multivariate Mixed-Effects Location Scale Modeling of Longitudinal Relations Among Affective Traits, States, and Physical Activity.
Eur J Psychol Assess. 2020 Nov;36(6):981-997. doi: 10.1027/1015-5759/a000624. Epub 2021 Jan 19.

本文引用的文献

1
THE DISTRIBUTION OF PHENOTYPIC VARIANCE WITH INBREEDING.
Evolution. 1999 Aug;53(4):1143-1156. doi: 10.1111/j.1558-5646.1999.tb04528.x.
2
Estimating Dynamical Systems: Derivative Estimation Hints From Sir Ronald A. Fisher.
Multivariate Behav Res. 2010 Aug 6;45(4):725-45. doi: 10.1080/00273171.2010.498294.
3
Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability.
Psychometrika. 2010 Mar;75(1):158-175. doi: 10.1007/S11336-009-9137-9.
4
A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data.
Stat Interface. 2009;2(4):391-401. doi: 10.4310/sii.2009.v2.n4.a1.
7
Ecological momentary assessment of adolescent smoking cessation: a feasibility study.
Nicotine Tob Res. 2008 Jul;10(7):1185-90. doi: 10.1080/14622200802163118.
8
An application of a mixed-effects location scale model for analysis of Ecological Momentary Assessment (EMA) data.
Biometrics. 2008 Jun;64(2):627-34. doi: 10.1111/j.1541-0420.2007.00924.x. Epub 2007 Oct 26.
9
A mixed-effects regression model for three-level ordinal response data.
Stat Med. 2005 Nov 15;24(21):3331-45. doi: 10.1002/sim.2186.
10
Comments about Joint Modeling of Cluster Size and Binary and Continuous Subunit-Specific Outcomes.
Biometrics. 2005 Sep;61(3):862-6; discussion 866-7. doi: 10.1111/j.1541-020X.2005.00409_1.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验